有三个自然数.最大的比最小的大6,另一个是他们的平均数,且三数的乘积是42560,求这三个自然数.
42560=2^6×5×7×19=2^5×(5×7)×(19×2)=32×35×38,三个自然数分别是:32、35、38。
表示物体个数的数叫自然数,自然数一个接一个,组成一个无穷集体。自然数集有加法和乘法运算,两个自然数相加或相乘的结果仍为自然数,也可以作减法或除法。
但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不是总能成立的。自然数是人们认识的所有数中最基本的一类。
运算性质:
从加法交换律和结合律可以得到:几个加数相加,可以任意交换加数的位置;或者先把几个加数相加再和其他的加数相加,它们的和不变。例如:34+72+66+28=(34+66)+(72+28)=200。
几个数的积乘一个数,可以让积里的任意一个因数乘这个数,再和其他数相乘。例如:(25×3 × 9)×4=25×4×3×9=2700。
两个数的差与一个数相乘,可以让被减数和减数分别与这个数相乘,再把所得的积相减。例如: (137-125)×8=137×8-125×8=96。
先大概估计一下,30×30×30=27000,远小于42560.40×40×40=64000,远大于42560.因此,要求的三个自然数在30~40之间。
解:42560=26×5×7×19
=25×(5×7)×(19×2)
=32×35×38(合题意)
要求的三个自然数分别是32、35和38。
扩展资料
把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式)。它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。
因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。
分析: 先大概估计一下,30×30×30=27000,远小于42560.40×40×40=64000,远大于42560.因此,要求的三个自然数在30~40之间。
解:42560=26×5×7×19
=25×(5×7)×(19×2)
=32×35×38(合题意)
要求的三个自然数分别是32、35和38。
第二种
列式
42560=2^6×5×7×19
=2^5×(5×7)×(19×2)
=32×35×38
三个自然数分别是:32、35、38。
第三种
列方程解则是:
设中间数是x
则有(x+3)*x*(x-3)=42560
x^3-9x=42560
x^3-9x-42560=0
x=35 则
三个自然数分别是:32、35、38。