己知{an}是各项均为正数的等比数列,{bn}是等差数列,且a1=b1=1,b2+b3=2a3,a 5

己知{an}是各项均为正数的等比数列,{bn}是等差数列,且a1=b1=1,b2+b3=2a3,a5-3b2=7(1)求{an}和{bn}的通项公式(2)设Cn=anbn... 己知{an}是各项均为正数的等比数列,{bn}是等差数列,且a1=b1=1,b2+b3=2a3,a5-3b2=7
(1)求{an}和{bn}的通项公式
(2)设Cn=anbn,n属于正整数,求数列{Cn}的前n项和
展开
 我来答
xuzhouliuying
高粉答主

2016-01-09 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:5.4万
采纳率:86%
帮助的人:2.5亿
展开全部

解:

(1)

设{an}公比为q,则q>0,设{bn}公差为d。

a5-3b2=7,b2=(a5-7)/3

b1+b2+b3=3b2=1+2a3,b2=(2a3+1)/3

(a5-7)/3=(2a3+1)/3

a1q⁴-7=2a1q²+1

a1=1代入,整理,得q⁴-2q²-8=0

(q²+2)(q²-4)=0

q²=-2(舍去)或q²=4

q>0,q=2

b2=(a1q⁴-7)/3=(1·2⁴-7)/3=3

d=b2-b1=3-1=2

an=a1qⁿ⁻¹=1·3ⁿ⁻¹=2ⁿ⁻¹

bn=b1+(n-1)d=1+2(n-1)=2n-1

数列{an}的通项公式为an=2ⁿ⁻¹,数列{bn}的通项公式为bn=2n-1

(2)

cn=anbn=(2n-1)·2ⁿ⁻¹

Tn=1·1+3·2+5·2²+...+(2n-1)·2ⁿ⁻¹

2Tn=1·2+3·2²+...+(2n-3)·2ⁿ⁻¹+(2n-1)·2ⁿ

Tn-2Tn=-Tn

=1+2·2+2·2²+...+2·2ⁿ⁻¹-(2n-1)·2ⁿ

=1+2·(2+2²+...+2ⁿ⁻¹)-(2n-1)·2ⁿ

=1+2·2·(2ⁿ⁻¹-1)/(2-1) -(2n-1)·2ⁿ

=(3-2n)·2ⁿ-3

Tn=(2n-3)·2ⁿ+3

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
?>

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式