这个二重积分有绝对值的怎么处理??
3个回答
展开全部
把D分成D1和D2。
被积分区域分别关于x轴和y轴对称;被积分函数函数关于x和y都是偶函数。
设D1: 0≤x≤1,0≤y≤1
∫∫(D)︱︱x︱+︱y︱-1︱dσ=4∫∫(D1)︱x+y-1︱dσ=4{∫(0,1)∫(0,1-x)[-x-y+1]dxdy+∫(0,1)∫(1-x,1)[x+y-1]dxdy}=4{(1/2)∫(0,1)(1-x)^2+dx+(1/2)∫(0,1)x^2dx}=4[(1/6)+(1/6)]=4/3
扩展资料:
在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。
二重积分和定积分一样不是函数,而是一个数值。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。
参考资料来源:百度百科-二重积分
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询