1²+(1+ 1/n)²+(1+ 2/n)²+...+[1+ (n-1)/n]²
=1+1+ 2/n +1/n²+1+4/n+4/n²+...+1+ 2(n-1)/n +(n-1)²/n²
=n+[2+4+...+2(n-1)]/n+ [1/n²+2²/n²+...+ (n-1)²/n²]
=n+2[1+2+...+(n-1)]/n +[1²+2²+...+(n-1)²]/n²
=n+2[n(n-1)/2]/n + (n-1)n[2(n-1)+1]/(6n²)
=n+ n-1 + (n-1)(2n-1)/(6n)
=2n-1 +(2n²-3n+1)/(6n)
=2n -1 +⅓n -½ +1/(6n)
=(7/3)n -(3/2) +1/(6n)
(1/n)[1²+(1+ 1/n)²+(1+ 2/n)²+...+[1+ (n-1)/n]²]
=(1/n)[(7/3)n -(3/2) +1/(6n)]
=(7/3) -(3/2)/n +1/(6n²)
n→∞,(3/2)/n→0,1/(6n²)→0
(7/3) -(3/2)/n +1/(6n²)→ 7/3
lim(1/n)[1²+(1+ 1/n)²+(1+ 2/n)²+...+[1+ (n-1)/n]²] =7/3
n→∞
选C