求分段函数的连续性和可导性。 不要定义 要解题步骤。
1个回答
展开全部
可以用定义啊,但是必须是求导的定义公式
即f'(x0)=lim(x→x0)[f(x)-f(x0)]/(x-x0)
例如这个函数f(x)=x(x≥0);x-1(x<0)
这样一个分段函数,你不能认为在x=0点的左导数为(x-1)'=1
右导数为(x)'=1,左右导数都是1,所以在x=0点的导数为1
因为(x-1)'=1和(x)'=1都是在函数连续的前提下才成立的。
而这函数只是右连续,没有左连续。
所以用(x-1)'=1求左导数就是错误的。
只能用f'(0-)=lim(x→0-)[f(x)-f(0)]/(x-x0)来求左导数
左导数为f'(0-)=lim(x→0-)[f(x)-f(0)]/(x-0)
=f'(0-)=lim(x→0-)[(x-1)-0]/x(因为f(0)是根据x的计算式得到f(0)=0)
=lim(x→0-)(x-1)/x=∞
所以左导数不存在,在该点不可导。
即f'(x0)=lim(x→x0)[f(x)-f(x0)]/(x-x0)
例如这个函数f(x)=x(x≥0);x-1(x<0)
这样一个分段函数,你不能认为在x=0点的左导数为(x-1)'=1
右导数为(x)'=1,左右导数都是1,所以在x=0点的导数为1
因为(x-1)'=1和(x)'=1都是在函数连续的前提下才成立的。
而这函数只是右连续,没有左连续。
所以用(x-1)'=1求左导数就是错误的。
只能用f'(0-)=lim(x→0-)[f(x)-f(0)]/(x-x0)来求左导数
左导数为f'(0-)=lim(x→0-)[f(x)-f(0)]/(x-0)
=f'(0-)=lim(x→0-)[(x-1)-0]/x(因为f(0)是根据x的计算式得到f(0)=0)
=lim(x→0-)(x-1)/x=∞
所以左导数不存在,在该点不可导。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询