求椭圆焦半径公式的详细推导过程 50

 我来答
Beure
2018-02-03 · TA获得超过2140个赞
知道小有建树答主
回答量:1557
采纳率:85%
帮助的人:222万
展开全部

设M(m ,n)是椭圆x^2/a^2+ y^2/b^2=1(a>b>0)的一点,r1和r2分别是点M与点F₁(-c,0),F₂(c,0)的距离,那么(左焦半径)r₁=a+em,(右焦半径)r₂=a -em,其中e是离心率。

推导:r₁/∣MN1∣= r₂/∣MN2∣=e

可得:r1= e∣MN1∣= e(a^2/ c+m)= a+em,r2= e∣MN2∣= e(a^2/ c-m)= a-em。

所以:∣MF1∣= a+em,∣MF2∣= a-em

武汉颐光科技有限公司
2018-11-26 广告
设M(xo,y0)是椭圆x2/a2+ y2/b2=1(a>b>0)的一点,r1和r2分别是点M与点F1(-c,0),F2(c,0)的距离,那么(左焦半径)r1=a+ex0,(右焦半径)r2=a -ex0,其中e是离心率。  推导:r1/∣M... 点击进入详情页
本回答由武汉颐光科技有限公司提供
小小芝麻大大梦
高粉答主

2019-05-20 · 每个回答都超有意思的
知道大有可为答主
回答量:2.1万
采纳率:98%
帮助的人:994万
展开全部

证明:

|PF1|²

=(x - c)² + y²

=[a²(x - c)² + a²y²]/a²

=[a²x² - 2a²cx + a²c² + a²y²]/a² 根据b²x² + a²y² = a²b² 

=[a²x² - 2a²cx + a²c² + a²b² - b²x²]/a²

=[(a²-b²)x² = 2a²cx + a²(b² + c²)]/a²

=[c²x² -2a²cx + a^4]/a²

=(a² - cx)²/a²

∴PF1 = (a² - cx)/a = a - (c/a)x = a - ex

同理可证:PF2 = a + ex

扩展资料:

椭圆的基本性质

1、范围:焦点在  轴上  ,  ;焦点在  轴上  ,  。

2、对称性:关于X轴对称,Y轴对称,关于原点中心对称。

3、顶点:(a,0)(-a,0)(0,b)(0,-b)。

4、离心率:e=c/a或 e=√(1-b^2/a²)。

5、离心率范围:0<e<1。

6、离心率越小越接近于圆,越大则椭圆就越扁。

7、焦点(当中心为原点时):(-c,0),(c,0)或(0,c),(0,-c)。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
高州老乡
2018-02-03 · TA获得超过1.2万个赞
知道大有可为答主
回答量:8899
采纳率:76%
帮助的人:2943万
展开全部
焦半径是啥
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式