
4个回答
展开全部
令√(x-1)=t,那么x=t²+1
从而dx=2tdt
代入原式
=∫2t/t dt
=2∫dt
=2t+c
=2√(x-1)+c
很高兴为您解答,祝你学习进步!【the1900】团队为您答题。
有不明白的可以追问!如果您认可我的回答。
请点击下面的【选为满意回答】按钮,谢谢!
如果有其他需要帮助的题目,您可以求助我。谢谢!!
从而dx=2tdt
代入原式
=∫2t/t dt
=2∫dt
=2t+c
=2√(x-1)+c
很高兴为您解答,祝你学习进步!【the1900】团队为您答题。
有不明白的可以追问!如果您认可我的回答。
请点击下面的【选为满意回答】按钮,谢谢!
如果有其他需要帮助的题目,您可以求助我。谢谢!!

2024-04-11 广告
Minimax 电商平台4是我们广州江腾智能科技有限公司推出的一款高端智能机器人。它集合了先进的人工智能技术,具备强大的学习和适应能力,可以根据不同环境进行自我优化。Minimax 电商平台4在多个领域都有广泛应用,如智能家居、医疗辅助、工...
点击进入详情页
本回答由华瑞RAE一级代理商提供
展开全部
上下同乘以分子,下面是平方差,上面完全平方,得到
∫(x+1+1-2√(x+1))/(x+1-1) dx
=∫(x+2-2√(x+1))/x dx
=∫1+2/x-2√(x+1))/x dx
=x+2ln|x|-2∫√(x+1))/x dx
x=tan² t
dx=2sec²t*tantdt
∫√(x+1))/x dx
=∫(sect/tan²t)(2sec²t tant)dt
=∫2sec³t/tant dt
=2∫sint/cos^4t dt
=-2/3cos³t+C
=(-2/3)(sec³t)+C
=(-2/3)(1+x²)^(3/2)+C
带回原式
=x+2ln|x|-2∫√(x+1))/x dx
=x+2ln|x|-2(-2/3)(1+x²)^(3/2)+C
=x+2ln|x|+(4/3)(1+x²)^(3/2)+C
∫(x+1+1-2√(x+1))/(x+1-1) dx
=∫(x+2-2√(x+1))/x dx
=∫1+2/x-2√(x+1))/x dx
=x+2ln|x|-2∫√(x+1))/x dx
x=tan² t
dx=2sec²t*tantdt
∫√(x+1))/x dx
=∫(sect/tan²t)(2sec²t tant)dt
=∫2sec³t/tant dt
=2∫sint/cos^4t dt
=-2/3cos³t+C
=(-2/3)(sec³t)+C
=(-2/3)(1+x²)^(3/2)+C
带回原式
=x+2ln|x|-2∫√(x+1))/x dx
=x+2ln|x|-2(-2/3)(1+x²)^(3/2)+C
=x+2ln|x|+(4/3)(1+x²)^(3/2)+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫1/x(x+1)dx=∫(1/x-1/(x+1))dx=ln|x|-ln|(x+1)|+c=ln|x/(x+1)|+c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
ln|x/(x+1)|+C
解析:
f(x)
=1/[x(x+1)]
=1/x-1/(x+1)
~~~~~~~~~~~~
∫f(x)dx
=∫[1/x-1/(x+1)]dx
=ln|x|-ln|x+1|+C
=ln|x/(x+1)|+C
解析:
f(x)
=1/[x(x+1)]
=1/x-1/(x+1)
~~~~~~~~~~~~
∫f(x)dx
=∫[1/x-1/(x+1)]dx
=ln|x|-ln|x+1|+C
=ln|x/(x+1)|+C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询