实现无人驾驶技术难点有哪些?

 我来答
惠益农商贸
2018-01-24
知道答主
回答量:4
采纳率:0%
帮助的人:4.6万
展开全部
自动驾驶技术首先离不开硬件支持,还有控制器、定位系统、惯性测量单元、感知传感器、软件、信息采集技术、坐标转换、决策规划等,涉及到的技术比较多,建议你去清华大学孵化的汽车学堂在线学习平台,上面的课程比较专业,建议你去试试哦!
追问
请问怎么联系这这家机构,有什么报名渠道吗?
追答
你百度搜下汽车学堂就行
星嘉合科技有限公司
2018-01-15 · 财富点亮生活
星嘉合科技有限公司
启明星是为金融投资爱好者搭建的智能投顾平台,投顾将投资策略展示其上,供广大投资者选择,最终实现变智为金,投资者根据网站展示的策略产品进行产品的择优、择时、择机,实现财富与时间的自由。
向TA提问
展开全部
传感系统不得不承认,现在无人车能出现很大程度上依赖传感器的进步。其实早在 80 年代美国就通过磁钉导航完成过很多无人驾驶的实验。他们在地下埋上磁钉,通过寻找磁钉的方式可以完成高速的巡航、并道、超车等一些列的实验。很明显,这种成本太高,只能作为实验。
后来传感器技术突飞猛进,却依然很难达标。比如天气环境恶劣时将严重影响传感器的精度,或者车辆前方有障碍,要判断障碍物是运动的还是静止的,至于车是停下来还是绕过去,可通过人工势场算法。这部分主要的难度是传感器识别障碍,在车辆运动的前提下,确定障碍的运动状态。也就是说你要在运动的坐标系下,计算另一个物体相对静坐标系的速度,并作出判断。
GPS也是个问题。汽车行驶总要经过一些楼宇隧道吧,如果GPS无法到达,就需要里程计 + 陀螺仪,俗称惯性导航单元。这套系统的原理就是:花钱越多,有效时间越久。如果要能在没有 GPS 的情况下坚持 20 分钟,呵呵,要花3 个帕萨特。
原因是里程计、陀螺仪都存在累积误差。要注意,误差是累计的,也就是说上一时刻是 0.5m 的误差,下一时刻指定大于 0.5m。因此要尽可能约束累积误差,使其数量级很低,那么就要上光纤陀螺。因为电子级的陀螺通常达不到这个精度要求,不知道挠性陀螺行不行,但是估计挠性陀螺和光纤陀螺造价差不多。
感知系统
感知系统主要包括雷达和摄像头。雷达又分为激光雷达、毫米波雷达、超声波雷达等类型。激光雷达又可以分为单线雷达、双线雷达、多线雷达等。
雷达的优势在于测算的精度非常高,探测距离远,当然成本也不低。但也有缺点,比如:激光雷达对雨雾的穿透能力受到限制、对黑颜色的汽车反射率有限;毫米波雷达对动物体反射不敏感;超声波雷达的感知距离与频率受限;摄像头本身靠可见光成像,在雨雾天、黑夜的灵敏度有所下降。
360 度多线激光雷达,用于检测周围障碍物,无人车需要能够感知周围环境,又不能像人一样单纯用眼睛完成,于是这玩意可以返回周围障碍物的距离,误差毫米级。今天价值 3 个帕萨特。iot101君认为以后帕萨特可以作为一个计量单位使用,动不动就几个帕萨特。
摄像头也分单目和双目,当然双目的要好一点啦。双目的原理与人眼相似。人眼能够感知物体的远近,是由于两只眼睛对同一个物体呈现的图像存在差异,或称“视差”。目标距离越远,视差越小;反之,视差越大。所以说双目系统对目标物体距离感知是一种绝对的测量,而非估算。
双目系统成本比较低,而且没有识别率的限制,因为从原理上无需先进行识别再进行测算,而是对所有障碍物直接进行测量,无需维护样本数据库,因为对于双目没有样本的概念。双目系统的缺点在于:计算量非常大,对计算单元的性能要求非常高,这使得产品化、小型化的难度较大。所以在芯片或FPGA上解决双目的计算问题难度比较大。
国际上使用双目的研究机构或厂商,绝大多数是使用服务器来进行图像处理与计算的,也有部分将算法进行简化后,使用FPGA进行处理,这就使效果受到较大程度影响,存在很多噪点与空洞,这对后续的计算不利,存在安全风险。
识别交通标识,如限速牌、红绿灯。这些通过视觉系统完成,难点主要在实时性和鲁棒性。要离线处理这些交通标志是很简单的,但是在无人车上需要能在有限的时间里识别出来,并且考虑道路中可能有的光线变化、遮挡等问题。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式