高等数学 变上限积分
∫(0->x) (x-t) f(t) dt = x∫(0->x) f(t) dt - ∫(0->x) tf(t) dt
let
u=x-t
du =-dt
t=0, u=x
t=x, u=0
∫(0->x) f(x-t) dt
=∫(x->0) f(u) (-du)
=∫(0->x) f(t) dt
lim(x->0)∫(0->x) (x-t) f(t) dt / [ x.∫(0->x) f(x-t) dt ]
=lim(x->0)[x∫(0->x) f(t) dt - ∫(0->x) -tf(t) dt] / [ x.∫(0->x) f(t) dt ]
(0/0 分子分母分别求导)
=lim(x->0) [xf(x) + ∫(0->x) f(t) dt - xf(x)] / [ xf(x) +∫(0->x) f(t) dt ]
=lim(x->0) ∫(0->x) f(t) dt / [ xf(x) +∫(0->x) f(t) dt ]
(0/0 分子分母分别求导)
=lim(x->0) f(x) / [ xf'(x)+f(x) + f(x) ]
=lim(x->0) f(x) / [ xf'(x)+2f(x) ]
( 分子分母同时除以x)
=lim(x->0) [f(x)/x ] / [ f'(x)+2f(x)/x ]
=f'(0)/[f'(0) +2f'(0) ]
=1/3
厉害(ง •̀_•́)ง 最后换成导数定义形式好厉害👍👍
谢谢你。
广告 您可能关注的内容 |