如图,求详解
2个回答
展开全部
(1)
let
e^(x/2) = secu
(1/2)e^(x/2) dx = secu.tanu du
dx = 2tanu du
∫dx/√(e^x -1)
=∫2tanu du/tanu
=2u + C
=2arccos [1/e^(x/2) ] + C
(2)
let
x=asecu
dx=asecu.tanu du
∫dx/(x^2-a^2)^(3/2)
=∫asecu.tanu du /( atanu)^3
=(1/a^2) ∫secu/(tanu)^2 du
=(1/a^2) ∫cosu/(sinu)^2 du
=(1/a^2) ∫dsinu/(sinu)^2
=-(1/a^2) [1/(sinu)] + C
=-(1/a^2) [√(a^2-x^2)/x] + C
(3)
∫√(a^2 -x^2)/x^4 dx
let
x= asinu
dx= acosu du
∫√(a^2 -x^2)/x^4 dx
=∫[(acosu)/(asinu)^4] [acosu du]
=(1/a^2) ∫[ (cosu)^2/(sinu)^4 ] du
=(1/a^2) ∫ (cotu)^2.(cscu)^2 du
=-(1/a^2) ∫ (cotu)^2.d(cotu)
=-[1/(3a^2) ] (cotu)^3 + C
=-[ 1/(3a^2) ] [√(a^2-x^2)/x ]^3 + C
let
e^(x/2) = secu
(1/2)e^(x/2) dx = secu.tanu du
dx = 2tanu du
∫dx/√(e^x -1)
=∫2tanu du/tanu
=2u + C
=2arccos [1/e^(x/2) ] + C
(2)
let
x=asecu
dx=asecu.tanu du
∫dx/(x^2-a^2)^(3/2)
=∫asecu.tanu du /( atanu)^3
=(1/a^2) ∫secu/(tanu)^2 du
=(1/a^2) ∫cosu/(sinu)^2 du
=(1/a^2) ∫dsinu/(sinu)^2
=-(1/a^2) [1/(sinu)] + C
=-(1/a^2) [√(a^2-x^2)/x] + C
(3)
∫√(a^2 -x^2)/x^4 dx
let
x= asinu
dx= acosu du
∫√(a^2 -x^2)/x^4 dx
=∫[(acosu)/(asinu)^4] [acosu du]
=(1/a^2) ∫[ (cosu)^2/(sinu)^4 ] du
=(1/a^2) ∫ (cotu)^2.(cscu)^2 du
=-(1/a^2) ∫ (cotu)^2.d(cotu)
=-[1/(3a^2) ] (cotu)^3 + C
=-[ 1/(3a^2) ] [√(a^2-x^2)/x ]^3 + C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询