3个回答
展开全部
延长BC,作EG‖BA,交BC延长线于G,
∵EG‖BA
∴〈FEG=〈BDF(内错角相等),
∵〈EFG=〈BFD(对顶角相等),
DF=FE
∴△BDF≌△GEF(ASA)。
∴EG=BD,
∵CE=BD,
∴EG=CE,
三角形ECG是等腰三角形,
∴〈CGE=〈GCE
∵〈GCE=〈ACB(对顶角),
〈ABC=〈CGE
∴〈ABC=〈ACB,
∴△ABC是等腰三角形.
∵EG‖BA
∴〈FEG=〈BDF(内错角相等),
∵〈EFG=〈BFD(对顶角相等),
DF=FE
∴△BDF≌△GEF(ASA)。
∴EG=BD,
∵CE=BD,
∴EG=CE,
三角形ECG是等腰三角形,
∴〈CGE=〈GCE
∵〈GCE=〈ACB(对顶角),
〈ABC=〈CGE
∴〈ABC=〈ACB,
∴△ABC是等腰三角形.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
过D作DG∥AC交BC于G,
∵DG∥AC,
∴∠GDF=∠CFE,∠DGE=∠FCE.
在△DGE和△FCE中
∵∠GDE=∠CFE∠DGE=∠FCEDE=FE,
∴△DGE≌△FCE(AAS).
∴DG=CF,
∵BD=CF,
∴DG=BD.
∴∠DGB=∠B.
∵DG∥AC,
∴∠DGB=∠ACB.
∴∠B=∠ACB.
∴AB=AC.
∴△ABC是等腰三角形.
∵DG∥AC,
∴∠GDF=∠CFE,∠DGE=∠FCE.
在△DGE和△FCE中
∵∠GDE=∠CFE∠DGE=∠FCEDE=FE,
∴△DGE≌△FCE(AAS).
∴DG=CF,
∵BD=CF,
∴DG=BD.
∴∠DGB=∠B.
∵DG∥AC,
∴∠DGB=∠ACB.
∴∠B=∠ACB.
∴AB=AC.
∴△ABC是等腰三角形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询