因为数列{an}为等差数列,an+1=2an+2,a1=1,求数列an通项公式。
2个回答
展开全部
(I)∵a
n+1
=2a
n
+1(n∈N
*
),
∴a
n+1
+1=2(a
n
+1),
∴{a
n
+1}是以a
1
+1=2为首项,2为公比的等比数列.
∴a
n
+1=2
n
.
即a
n
=2
n
-1∈N
*
).
(II)证明:∵4b1-14b2-1…4bn-1=(an+1)bn(n∈N*)
∴4(b1+b2+…+bn)-n=2nbn.
∴2[(b
1
+b
2
+…+b
n
)-n]=nb
n
,①
2[(b
1
+b
2
+…+b
n
+b
n+1
)-(n+1)]=(n+1)b
n+1
.②
②-①,得2(b
n+1
-1)=(n+1)b
n+1
-nb
n
,
即(n-1)b
n+1
-nb
n
+2=0,nb
n+2
-(n+1)b
n+1
+2=0.
③-④,得nb
n+2
-2nb
n+1
+nb
n
=0,
即b
n+2
-2b
n+1
+b
n
=0,
∴b
n+2
-b
n+1
=b
n+1
-b
n
(n∈N
*
),
∴{b
n
}是等差数列.
(III)证明:∵
ak
ak+1
=
2k-1
2k+1-1
=
2k-1
2(2k-
1
2
)
<
1
2
,k=1,2,,n,
∴
a1
a2
+
a2
a3
++
an
an+1
<
n
2
.
∵
ak
ak+1
=
2k-1
2k+1-1
=
1
2
-
1
2(2k+1-1)
=
1
2
-
1
3.2k+2k-2
≥
1
2
-
1
3
.
1
2k
,k=1,2,,n,
∴
a1
a2
+
a2
a3
++
an
an+1
≥
n
2
-
1
3
(
1
2
+
1
22
++
1
2n
)=
n
2
-
1
3
(1-
1
2n
)>
n
2
-
1
3
,
∴
n
2
-
1
3
<
a1
a2
+
a2
a3
++
an
an+1
<
n
2
(n∈N*).
n+1
=2a
n
+1(n∈N
*
),
∴a
n+1
+1=2(a
n
+1),
∴{a
n
+1}是以a
1
+1=2为首项,2为公比的等比数列.
∴a
n
+1=2
n
.
即a
n
=2
n
-1∈N
*
).
(II)证明:∵4b1-14b2-1…4bn-1=(an+1)bn(n∈N*)
∴4(b1+b2+…+bn)-n=2nbn.
∴2[(b
1
+b
2
+…+b
n
)-n]=nb
n
,①
2[(b
1
+b
2
+…+b
n
+b
n+1
)-(n+1)]=(n+1)b
n+1
.②
②-①,得2(b
n+1
-1)=(n+1)b
n+1
-nb
n
,
即(n-1)b
n+1
-nb
n
+2=0,nb
n+2
-(n+1)b
n+1
+2=0.
③-④,得nb
n+2
-2nb
n+1
+nb
n
=0,
即b
n+2
-2b
n+1
+b
n
=0,
∴b
n+2
-b
n+1
=b
n+1
-b
n
(n∈N
*
),
∴{b
n
}是等差数列.
(III)证明:∵
ak
ak+1
=
2k-1
2k+1-1
=
2k-1
2(2k-
1
2
)
<
1
2
,k=1,2,,n,
∴
a1
a2
+
a2
a3
++
an
an+1
<
n
2
.
∵
ak
ak+1
=
2k-1
2k+1-1
=
1
2
-
1
2(2k+1-1)
=
1
2
-
1
3.2k+2k-2
≥
1
2
-
1
3
.
1
2k
,k=1,2,,n,
∴
a1
a2
+
a2
a3
++
an
an+1
≥
n
2
-
1
3
(
1
2
+
1
22
++
1
2n
)=
n
2
-
1
3
(1-
1
2n
)>
n
2
-
1
3
,
∴
n
2
-
1
3
<
a1
a2
+
a2
a3
++
an
an+1
<
n
2
(n∈N*).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询