若圆x的平方+(y-1)的平方=1上任意一点(x,y)都能使不等式x+y+m>=0成立,则实数m的取值范围是多少
2个回答
展开全部
若圆x^2+(y-1)^2=1上任意一点(x,y)都能使不等式x+y+m大于或等于0成立,
1:先说能使x+y+m=0成立,它是一条直线,不管x,y是圆上的哪一点,都能找出一个m来,使直线x+y+m=0与圆相切或者相交
所以从图象上看,m=0可以
m>0时,直线图象在二三四象限.m为截距=1-√2
m<0时,直线图象在一二四象限.m为截距=1+√2
所以,当1-√2≤m≤1+√2时,x+y+m=0成立(总能找到1个m,是直线与圆相切或者相交)
2:什么时候x+y+m>0成立?
那就是当圆上的点在直线上或者直线下方时,成立
,此时
m≥1+√2,直线永远在圆的上方,对于任意的m,圆上的点永远在直线下方.
最后,实数m的取值范围为:m≥1-√2
1:先说能使x+y+m=0成立,它是一条直线,不管x,y是圆上的哪一点,都能找出一个m来,使直线x+y+m=0与圆相切或者相交
所以从图象上看,m=0可以
m>0时,直线图象在二三四象限.m为截距=1-√2
m<0时,直线图象在一二四象限.m为截距=1+√2
所以,当1-√2≤m≤1+√2时,x+y+m=0成立(总能找到1个m,是直线与圆相切或者相交)
2:什么时候x+y+m>0成立?
那就是当圆上的点在直线上或者直线下方时,成立
,此时
m≥1+√2,直线永远在圆的上方,对于任意的m,圆上的点永远在直线下方.
最后,实数m的取值范围为:m≥1-√2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
首先,你要明白题目到底在表达什么,给了什么条件,这些条件需要到哪些知识,这些知识能不能解决这些问题。
x2+(y-1)2=1
这是一个圆的特殊表达式(简洁表达式,她表示,任何满足该方程的点都在圆上。)
x+y+m>=0
这是一个取值表达式,她表示某个满足该表达式的点,都在y=-x-m这条直线上方范围
那么,题目要求的是,满足该圆方程任意一点都在y=-x-m这条直线上以及上方范围
那么
|m+1|>=根号2
(圆心(0,1)到直线x+y+m=0的距离大于等于圆半径1)
则
m<=-根号2-1
或
m>=根号2-1
1+m>=0
m>=-1(圆心在x+y+m=0上以及上方)
综上
m>=根号2-1
x2+(y-1)2=1
这是一个圆的特殊表达式(简洁表达式,她表示,任何满足该方程的点都在圆上。)
x+y+m>=0
这是一个取值表达式,她表示某个满足该表达式的点,都在y=-x-m这条直线上方范围
那么,题目要求的是,满足该圆方程任意一点都在y=-x-m这条直线上以及上方范围
那么
|m+1|>=根号2
(圆心(0,1)到直线x+y+m=0的距离大于等于圆半径1)
则
m<=-根号2-1
或
m>=根号2-1
1+m>=0
m>=-1(圆心在x+y+m=0上以及上方)
综上
m>=根号2-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询