求微分方程y"+y'-2y=e∧x的通解

 我来答
缑安荷楚新
2019-09-20 · TA获得超过2.9万个赞
知道大有可为答主
回答量:1.2万
采纳率:33%
帮助的人:592万
展开全部
解:首先其次解y''-2y'+y=0的解为y=(cx+d)*e^x
下面求一个特解即y''-2y'+y=e^x
-----(1)
令y=z*e^x
代入(1)有(z*e^x)''-2(z*e^x)'+z*e^x=e^x
即z''e^x+2*z'e^x+z*e^x-2z*e^x-2z'*e^x+z*e^x=e^x
即z''=1
=>z=x^2/2+m*x+n
取z=x^2/2即可
故最后通解=(x^2/2+cx+d)*e^x
c,d为全体数
证毕
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式