求微分方程y'-2y'+y=xe^x-e^x满足初始条件y(1)=y'(1)=1的特解

 我来答
咸姮竺乔
2019-02-04 · TA获得超过1149个赞
知道小有建树答主
回答量:1855
采纳率:83%
帮助的人:8.7万
展开全部
(1-2)y'+y-(x+1)e^x=0
-y'+y-(x+1)e^x=0
y'-y+(X+1)e^x=0
P(x)=-1 Q(x)=(x+1)e^x
∫P(x)dx=∫(-1)dx=-x
y=e^(-∫P(x)dx)[∫Q(x)e^∫P(x)dx+c]
y=e^x[∫(x+1)e^x*e^(-x)dx+c]
y=e^x[∫(x+1)dx+c]
y=e^x(1/2*x^2+x+c)
∵y(1)=1
∴1=e(1/2*1^2+1+c)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式