两个不是实对称的矩阵怎么判断是否合同?
1个回答
展开全部
判断矩阵合同的方法:
1、设A,B均为复数域上的n阶对称矩阵,则A与B在复数域上合同等价于A与B的秩相同。
2、设A,B均为实数域上的n阶对称矩阵,则A与B在实数域上合同等价于A与B有相同的正、负惯性指数(即正、负的个数对应相等)。
矩阵合同的定义:
在线性代数,特别是二次型理论中,常常用到矩阵间的合同关系。两个矩阵A和B是合同的,当且仅当存在一个可逆矩阵 C,使得C^TAC=B,则称方阵A合同于矩阵B。
矩阵合同的性质:
1、反身性:任意矩阵都与其自身合同。
2、对称性:A合同于B,则可以推出B合同于A。
3、传递性:A合同于B,B合同于C,则可以推出A合同于C。
4、合同矩阵的秩相同。
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。
将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询