若集合A有n个元素,则集合A的子集个数为2^n(即2的n次方)真子集个数是什么 非空真子集个数是什么 并证明

请证明!!!!!!!!我才刚刚高一~~~请说明白点... 请证明!!!!!!!!我才刚刚高一~~~请说明白点 展开
百度网友f707955
推荐于2016-12-01 · TA获得超过209个赞
知道答主
回答量:98
采纳率:0%
帮助的人:0
展开全部
2^n - 1, 2^n - 2
证:设元素编号为1, 2, ... n。每个子集对应一个长度为n的二进制数, 数的第i位为1表示元素i在集合中,0表示元素i不在集合中。
00...0(n个0) ~ 11...1(n个1) [二进制]
一共有2^n个数,因此对应2^n个子集,去掉11...1(即全1,表示原来的集合A)则有2^n-1个真子集,再去掉00...0(即全0,表示空集)则有2^n-2个非空真子集
比如说集合{a, b, c}元素编号为a--1, b--2, c--3
111 <--> {a, b, c} --> 即集合A
110 <--> {a, b, } --> 元素1(a), 元素2(b)在子集中
101 <--> {a, , c} --> 元素1(a), 元素3(c)在子集中
... ...
001 <--> { , , c}
000 <--> { , , } --> 即空集
如果你学过排列组合,可以有更简单的证明。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式