高数题求解答

 我来答
shawhom
高粉答主

2022-05-29 · 喜欢数学,玩点控制,就这点爱好!
shawhom
采纳数:11707 获赞数:28009

向TA提问 私信TA
展开全部

如图,求解过程与结果如下,望采纳…

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
十全小秀才

2022-05-29 · 三人行必有我师焉!!
十全小秀才
采纳数:2251 获赞数:9386

向TA提问 私信TA
展开全部

解:微分方程为3x²+5x-5y'=0,化为y'=

(3/5) x²+x,y=x³/5+x²/5+c(c为任意常数)

∵y(0)=1 ∴得:c=1,微分方程的特解为

y=x³/5+x²/5+1

请参考,希望对你有帮助

随着分析学对函数引入微分运算,表示未知函数的导数以及自变量之间的关系的方程进入数学家的视野,这就是微分方程。微分方程的形成与发展与力学、天文学、物理学等科学技术的发展密切相关。因为在现实的世界中,物质的运动及其变化规律在数学上是用函数关系来描述的,这意味着问题的解决就是要去寻求满足某些条件的函数,而这类问题就转换为微分方程的求解问题。微分方程为科学发现提供了有力工具。

解微分问题的基本思想类似于解代数方程,要把问题中已知函数和未知函数之间的关系找出来,进而得到包含未知函数的一个或几个方程,然后使用分析的方法去求得未知函数的表达式。

如果微分方程中出现的未知函数只含一个自变量,那么该类微分方程就是常微分方程。常微分方程的通解构成一个函数族,主要研究方程或方程组的分类及解法、解的存在性和唯一性、奇解、定性理论等等内容。

现在,常微分方程在自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等学科领域内有着重要的应用。

如果一个微分方程中出现多元未知函数的偏导数,那么这就是偏微分方程。偏微分方程作为一门学科产生于18世纪对振动弦问题的研究。在科学技术飞速发展过程中,更多的问题无法用只含一个自变量的函数来描述,多个变量的函数来描述才更合适。

作为同一类现象的共同规律表示式,偏微分方程的解一般有无穷多个,而具体物理问题的解决,必须依据附加条件从中选取所需要的解。就物理现象来说,各具体问题的特殊性就在于研究对象所处的初始条件和边界条件。

初始条件和边界条件叫做定解条件。偏微分方程本身表达的是同一类物理现象的共性,是作为解决问题的依据;定解条件却反映出具体问题的个性,反映了问题的具体情况;那么方程和定解条件合而为一,就叫定解问题。

求偏微分方程的定解问题可以先求其通解,然后用定解条件找出函数。但一般在实际中来说,通解是不容易求出的,用定解条件确定函数则是更难。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式