对于任何大于1的自然数n,证明:(1+1/3)(1+1/5)(1+1/7),(1+1/2n-1)>根号2n-1/2

 我来答
新科技17
2022-06-19 · TA获得超过5877个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:73.7万
展开全部
用数学归纳法,n=2,成立.
假设n=k时命题成立:(1+1/3)(1+1/5)……(1+1/(2k-1))>根号(2k+1)/2
只需证
(1+1/2k+1)(根号(2k+1)/2)>
根号(2k+3)/2即可
即证(2k+3)/(2k+1)>根号(2k+3)/根号(2k+1)
因为大于1的数开根号后比原来小,
故(2k+3)/(2k+1)>根号(2k+3)/根号(2k+1)成立,进而原题得证
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式