什么原因造成了几何重数和代数重数
2个回答
展开全部
代数重数指的是方程跟上的重数,几何重数是指几何图案在该点上的重数。
下面让我们来简单分析一下:代数重数指相同根的个数;几何重数指特征向量生成线性空间的维数。例如几何重数=5,即表示线性空间的基向量有5个,或者说线性无关特征向量=5个。一般情况是: 几何重数≤代数重数。
在矩阵运算中,该矩阵有特征值是重根,则该特征值所对应的特征向量所构成空间(即特征子空间,也是方程组(λI-A)x=0)的维数,称为几何重数。
几何重数和代数重数的联系:复合矩阵A可对角化的充要条件是A的每个特征值的几何重数等于代数重数。复合矩阵A的每个特征值对应的几何重数小于或等于代数重数。
几何重数和代数重数的区别:性质不同,几何重数:在矩阵运算中,该矩阵有特征值是重根,则该特征值所对应的特征向量所构成空间(即特征子空间,也是方程组(λI-A)x=0)的维数,称为几何重数。代数重数:指方程的根的重数。
表示不同,几何重数:表示空间的维数。代数重数:表示方程的根是几重根。
下面让我们来简单分析一下:代数重数指相同根的个数;几何重数指特征向量生成线性空间的维数。例如几何重数=5,即表示线性空间的基向量有5个,或者说线性无关特征向量=5个。一般情况是: 几何重数≤代数重数。
在矩阵运算中,该矩阵有特征值是重根,则该特征值所对应的特征向量所构成空间(即特征子空间,也是方程组(λI-A)x=0)的维数,称为几何重数。
几何重数和代数重数的联系:复合矩阵A可对角化的充要条件是A的每个特征值的几何重数等于代数重数。复合矩阵A的每个特征值对应的几何重数小于或等于代数重数。
几何重数和代数重数的区别:性质不同,几何重数:在矩阵运算中,该矩阵有特征值是重根,则该特征值所对应的特征向量所构成空间(即特征子空间,也是方程组(λI-A)x=0)的维数,称为几何重数。代数重数:指方程的根的重数。
表示不同,几何重数:表示空间的维数。代数重数:表示方程的根是几重根。
展开全部
在矩阵运算中,该矩阵有特征值是重根,则该特征值所对应的特征向量所构成空间(即特征子空间,也是方程组(λI-A)x=0)的维数,称为几何重数。
代数重数:指方程的根的重数,也就是说,方程的根是几重根。(举例:(x-2)3=0,这个方程的根为x=2,这个根是3重的,因此x=2的代数重数为3)。
几何重数相关定理:
复方阵A可对角化的充分必要条件是A的每个特征值的几何重数与代数重数相等。
复方阵A的每个特征值对应的几何重数小于等于代数重数。
代数重数:指方程的根的重数,也就是说,方程的根是几重根。(举例:(x-2)3=0,这个方程的根为x=2,这个根是3重的,因此x=2的代数重数为3)。
几何重数相关定理:
复方阵A可对角化的充分必要条件是A的每个特征值的几何重数与代数重数相等。
复方阵A的每个特征值对应的几何重数小于等于代数重数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询