一整数a若不能被2和3整除,则a的平方+23必能被24整除

 我来答
吃吃喝莫吃亏9728
2022-08-03 · TA获得超过856个赞
知道小有建树答主
回答量:314
采纳率:92%
帮助的人:63.4万
展开全部
证明 ∵a^2+23=(a^2-1) +24,只需证 a^2-1可以被 24整除即可 .
∵a不能被2整除 .∴a为奇数 .设 a=2k+1(k为整数 ),
则 a2-1=(2k+1)2-1=4k2+4k=4k(k+1).
∵k 、 k+1为二个连续整数,故 k(k+1)必能被 2整除,
∴8|4k (k+1),即 8|(a^2-1) .
又 ∵(a-1),a,(a+1)为三个连续整数,其积必被 3整除,即 3|a(a-1)(a+1) =a(a^2-1),
∵a不能被3整除 ,∴3|(a^2-1) .3与 8互质 ,∴24|(a^2-1),即 a^2+23能被 24整除 .
祝您学习愉快
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式