已知二次函数y=x2+4x+k-1.?

 我来答
世纪网络17
2022-10-16 · TA获得超过5958个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:144万
展开全部
解题思路:(1)根据抛物线y=x 2+4x+k-1与x轴有两个不同的交点,得出b 2-4ac>0,进而求出k的取值范围.
(2)根据顶点在x轴上,所以顶点的纵坐标是0,求出即可.
(1)∵二次函数y=x2+4x+k-1的图象与x轴有两个交点
∴b2-4ac=42-4×1×(k-1)=20-4k>0
∴k<5,
则k的取值范围为k<5;
(2)根据题意得:

4ac−b2
4a=
4(k−1)−16
4×1=0,
解得k=5.
,4,已知二次函数y=x 2+4x+k-1.
(1)若抛物线与x轴有两个不同的交点,求k的取值范围;
(2)若抛物线的顶点在x轴上,求k的值.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式