怎么解方程组

 我来答
猫先生143
2023-08-06 · TA获得超过674个赞
知道大有可为答主
回答量:3.1万
采纳率:0%
帮助的人:429万
展开全部

怎么解方程组介绍如下:

解二元一次方程组有两种方法:(1)代入消元法;(2)加减消元法

(1)代入消元法

例:解方程组:x+y=5①

6x+13y=89②

由①得   x=5-y③

把③代入②,得

6(5-y)+13y=89

即 y=59/7

把y=59/7代入③,得x=5-59/7

即 x=-24/7

∴ x=-24/7

y=59/7 为方程组的解

我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法,简称代入法.

(2)加减消元法

例:解方程组:x+y=9①

x-y=5②

①+② 得 2x=14

即 x=7

把x=7代入①,得 7+y=9

解,得:y=2

∴ x=7

y=2 为方程组的解

像这种解二元一次方程组的方法叫做加减消元法,简称加减法.

什么是方程组?

方程组 ,又称联立方程。把若干个方程合在一起研究,使其中的未知数同时满足每一个方程的一组方程。能同时满足方程组中每个方程的未知数的值,称为方程组的“解”。求出它所有解的过程称为“解方程组”。

解方程组的总体思想是消元,其中包括加减消元法和代入消元法。

扩展资料

对于方程组Ax=b,如果A是行满秩的矩阵,那么方程组要么有唯一解,要么有无穷多解。

如果A是行满秩的矩阵,因为矩阵的列秩等于矩阵的行秩,所以矩阵的列秩等于矩阵的行数,所以矩阵的列向量的线性组合一定能得到所有该维数的列向量。

比如A是2x4的矩阵,A的秩为2,那么组成A的四个列向量的秩为2,这四个列向量都是2维的,那这四个列向量是不是能线性组合成任意的二维列向量,所以一定有解。

A的形式要么是矮且胖要么是方阵(矩阵的列不可能小于矩阵的行数),如果矩阵A矮且胖的话,那么对线性方程组的约束的个数(矩阵的行数)小于未知数的个数,那就是无穷多解。矩阵A是方阵,根据克拉默法则我们也能得出是唯一解。

东莞大凡
2024-11-14 广告
标定板认准大凡光学科技,专业生产研发厂家,专业从事光学影像测量仪,光学投影测量仪.光学三维测量仪,光学二维测量仪,光学二维测量仪,光学三维测量仪,光学二维测量仪.的研发生产销售。东莞市大凡光学科技有限公司创立于 2018 年,公司总部坐落于... 点击进入详情页
本回答由东莞大凡提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式