为什么无理数比有理数多

越详细越好,我(初二)要是弄懂了追加20分,求求求求!!!!... 越详细越好,我(初二)要是弄懂了追加20分,求求求求!!!! 展开
来自鸳鸯湖纯朴的菠菜
高粉答主

2019-10-12 · 关注我不会让你失望
知道答主
回答量:12
采纳率:100%
帮助的人:5044
展开全部

因为任意两个有理数之间存在着无限多个无理数。

全体实数可以覆盖整个数轴,而全体有理数不能覆盖整个数轴。任取两个相邻的有理数,则它们之间必存在无限多个无理数。

无理数,即非有理数之实数,不能写作两整数之比。若将它写成小数形式,它会是有无限位数、非循环的小数。 常见的无理数有大部分的平方根、π和e(其中后两者同时为超越数)等。无理数的另一特征是无限的连分数表达式。 

证明: 设有理数有N个,N个有理数和根号2相乘就得到(N-1)个无理数,同样的道理,N个有理数和根号3相乘也得到(N-1)个无理数,得:无理数有(2N-2)个。

扩展资料:

有理数a,b的大小顺序的规定:如果a-b是正有理数,则称当a大于b或b小于a,记作a>b或b<a。任何两个不相等的有理数都可以比较大小。

有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。

有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。

参考资料来源:百度百科-有理数

参考资料来源:百度百科-无理数



匿名用户
推荐于2017-09-09
展开全部
简单说就是任意两个有理数之间存在着无限多个无理数。

全体实数可以覆盖整个数轴,而全体有理数不能覆盖整个数轴。任取两个相邻的有理数,则它们之间必存在无限多个无理数

首先说明什么是“多”。有理数和无理数不对等,即不能建立一一对应关系。而如果两个集合可以建立一一对应关系,则说它们是对等的(即“一样多”)。
无穷集合的对等与有限集的一样多在直观上可能是不同的,如整数和偶数是可以一一对应的(n对应2n),因而它们是对等的。

因为有理数可以写成整数分数的形式,因此有理数和整数对儿对等;又因为整数对儿(0, 0)、(0, 1)、(1, 0)、(1, 1)……可以排成有序的一列(正负可以交错排列),因此整数对儿和自然数也对等。
同样的,由于无理数有1.1415926……,2.1415926……,3.1415926……,因此无理数的一部分可以与自然数建立一一对应关系,它们是对等的。因此无理数不会比自然数少,也就不会比有理数少。
我们现在只要说明无理数与自然数不能对等。

我们用反证法。反设无理数可以排成一列(从而可以编号1、2、3……):
x.xxxx……
x.xxxx……
……
我们可以找出一个新的无理数,它的第一位与上面数列中的第一个数不同,第二位与数列中的第二个数不同,……从而这个新无理数就不在数列中,这是一个矛盾。此矛盾说明无理数不能排成一列,即无理数比自然数多,从而比有理数多。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
清风斋彩彩
2009-11-19
知道答主
回答量:1
采纳率:0%
帮助的人:0
展开全部
这个问题有点复杂,你还没学到。要用到极限的知识。虽说有理数和无理数都是无穷的,看起来无法比较,但是无理数是比有理数多的。不妨考虑区间[0,1]的有理数,因为有理数是分数,所以依分母从小到大的顺序,可以将他们排成一个数列,即0,1,1/2,1/3,2/3,1/4,3/4,........其中去掉了重复的数字。显然,[0 ,1]上的所有有理数都在这个数列里。又因为点是没有长度的,所以对以任意的a>0可以用一个长度为a/2的区间将0包住,用一个长度为a/4的区间将1包住,用一个长度为a/8的区间将1/2包住,.........这些区间的长度和是a/2+4/a+a/8+.....=a[1-(1/2)^n]等比数列求和公式。极限为a,因此在[0,1]所有的有理数占据的长度小于a ,但a是任意的,所以[0,1]之间几乎都是无理数。所以出现了个奇妙的问题,假如能在有理数上安装一个红灯,无理数上安装个绿灯,接通电源,出现的现象是眼前是一条绿线几乎看不到红色。。。和平常认为的不同。。。偶然得知的。这就是有时候直观显得苍白,无限却充满矛盾啊。此矛盾岂直观能解决。愿对你有所帮助,加油,好好学习哈。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
XYZZYX12345678
2009-11-11 · TA获得超过7344个赞
知道大有可为答主
回答量:1505
采纳率:0%
帮助的人:1648万
展开全部
这是个说不清道不明的命题。
任意两个有理数之间都存在着无数个无理数,同时也存在着无数个有理数,不信你试试看,将一个具体的区间无限细分下去[小数点后不断地增加尾数,只要能写出来具体的数都是有理数],比如0.3和0.4之间可以有0.33,0.333,0.3333,...,单就这一种形式的有理数就有无数个,它们都可以化成有理数的分数形式。当然了,你也可以构造一个无理数序列:0.33+√2/100、0.333+√2/1000、0.3333+√2/10000、...等等,这同样也是无数个。举例仅仅是举例,并不能说明那种多那种少,或者数量相等,因为例子是无穷尽的,无法进行理论判断。这正如鲁迅先生所说的:“神鬼之事吾也难明”。如果哪位大数学家能证明这种命题的话,我想,上帝一定会哭的,如果有上帝的话。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
俺是农民wokao
2012-05-01
知道答主
回答量:23
采纳率:0%
帮助的人:12万
展开全部
据我所知,这个问题不是说有理数多还是物理数多的问题,而是实数(有理数加无理数)能填满整个数轴,而有理数相对于整个数轴,稠密性约为零,而无理数几乎能填满整个数轴。从数量上看,它们都是无穷多个,从数轴的代数几何意义上来看,相对于无理数,有理数的数量可以忽略不计。也就是你所说的无理数多,这个结论你应该能明白了吧。另外,这个数轴不一定非要是10进制的,任意进制都可以。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(17)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式