如何判断一个数列是发散的还是收敛的,怎样求一个数列的极限
n趋于无穷大时,趋于某个确定的值就是收敛,否则就是发散的。
极限的求法有很多种:
1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。
2、利用恒等变形消去零因子(针对于0/0型)。
3、利用无穷大与无穷小的关系求极限。
4、利用无穷小的性质求极限。
5、利用等价无穷小替换求极限,可以将原式化简计算。
6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。
扩展资料
看n趋向无穷大时,Xn是否趋向一个常数,可是有时Xn比较复杂,并不好观察,加减的时候,把高阶的无穷小直接舍去如 1 + 1/n,用1来代替乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来。
基本公式:
1、一般数列的通项an与前n项和Sn的关系:an=Sn-Sn-1。
2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
3、等差数列的前n项和公式:Sn=An^2+Bn Sn=na1+[n(n-1)]d/2 Sn=(a1+an)n/2。
当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。
4、等比数列的通项公式: an= a1 qn-1 an= ak qn-k (其中a1为首项、ak为已知的第k项,an≠0)。
5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式)。