最简单的勾股定理的证明方法是什么?
证法一:
这是最简单精妙的证明方法之一,几乎不用文字解释,可以说是无字证明。如图所示,左边是4个相同的直角三角形与中间的小正方形拼成的一个大正方形。
图形变换后面积没有变化,左边大正方形的边长是直角三角形的斜边c,面积是c2;右边图形可分割为两个正方形,它们的边长分别为直角三角形的两条直角边a和b,面积就是a2+b2,于是a2+b2=c2。
图中左边的“弦图”最早出现在公元222年的中国数学家赵爽所著《勾股方圆图注》,赵爽是我国数学史上证明勾股定理的第一人。2002年8月,在北京召开的国际数学家大会,标志着中国数学进入崭新的时代,大会会徽就是这个“弦图”,寓意中国古代数学取得的重要成果。
证法二:
这一解法应该是来历最有趣的证明方法之一,是由美国第20任总统茄菲尔德(JamesA.Garfield,1831~1881)用下图证明出的。
这位总统并不是一位数学家,他甚至都不曾学习过数学。他只是非正式地自学过几何知识,很喜欢摆弄基础图形,当他还是众议院议员时,想出了这个精巧的证明,1876年发表在《新英格兰教育杂志》(New England Journal of Education)上。总统先生的证明如下:
首先,图中的梯形面积为:
组成梯形的三个三角形的面积为:
因此就有如下等式:
即得a2+b2=c2。
接下来的两个证明非常简单易懂,被认为是所有证明中最短、最简单的证明,因为从开始到结束只用了几行。但这些证明依赖于相似三角形的概念,要全面展开这个概念还需要大量的基础工作,这里就不再赘述。
证法三:
证法四:
这一证法涉及到圆内相交弦定理:m·n=p·q(如左图),再看AB和CD垂直的情况,相交弦定理仍然成立(如右图),因此(c-a)(c+a)=b2。即得c2-a2=b2于是,a2+b2=c2。
2024-04-02 广告
简单的勾股定理的证明方法如下:
做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形。
发现四个直角三角形和一个边长为a的正方形和一个边长为b的正方形,刚好可以组成边长为(a+b)的正方形;四个直角三角形和一个边长为c的正方形也刚好凑成边长为(a+b)的正方形。
所以可以看出以上两个大正方形面积相等。 列出式子可得:
拓展资料:
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
参考资料:勾股定理_百度百科
已知:△ABC是直角三角形,∠C=90°。
求证:AC²+BC²=AB²
证明:过点C作CD⊥AB,垂足为D,则AD、BD分别是AC、BC在斜边AB上的射影。
由射影定理可得:
AC²=AD·AB , BC²=BD·AB
∴AC²+BC²=AD·AB +BD·AB=AB·(AD+BD)=AB²