cotx的平方求不定积分(原函数),希望有详细答案
2个回答
展开全部
cotx的平方的不定积分是 -cotx -x +C。
解:
∫(cotx)^2dx
=∫(cosx)^2 / (sinx)^2 dx
=∫ [1-(sinx)^2]/(sinx)^2 dx
=∫ 1/(sinx)^2 -1 dx
= -cotx -x +C
所以cotx的平方的不定积分是 -cotx -x +C。
扩展资料:
1、分部积分法的形式
(1)通过对u(x)求微分后,du=u'dx中的u'比u更加简洁。
例:∫x^2*e^xdx=∫x^2de^x=x^2*e^x-∫e^xdx^2=x^2*e^x-∫2x*e^xdx
(2)利用有些函数经一次或二次求微分后不变的性质来进行分部积分。
例:∫e^x*sinxdx=∫sinxde^x=e^x*sinx-∫e^xdsinx=e^x*sinx-∫e^x*cosxdx
=e^x*sinx-∫cosxde^x=e^x*sinx-e^x*cosx+∫e^xdcosx
=e^x*sinx-e^x*cosx-∫e^x*sinxdx
则2∫e^x*sinxdx=e^x*sinx-e^x*cosx,可得∫e^x*sinxdx=1/2e^x*(sinx-cosx)+C。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询