求和:1×4+2×7+3×10.....+n(3n+1)

阿可斯
2009-12-02 · TA获得超过760个赞
知道小有建树答主
回答量:284
采纳率:0%
帮助的人:0
展开全部
那我帮楼上的补完吧,前面一部分就是(1+n)n/2,下面主要是3*(1^2+2^2+……+n^2)。
先说结果吧,因为1^2+2^2+……+n^2=1/6*n(n+1)(2n+1),所以最后=n*(n+1)^2。

重点是怎么求1^2+2^2+……+n^2,我在这里讲2种方法,设Sn=1^2+2^2+……+n^2。
方法1:
展开成1+2+3+4+5……+n
+2+3+4+5+……+n
3+4+5+……+n
4+5+……+n
……
+n
用求和公式:
(1+n)n/2
+(2+n)(n-1)/2
+……
+(n+n)(n-(n-1))/2
化简=0.5*[(n+1)n+(n+2)(n-1)+(n+3)(n-2)+(n+4)(n-3)+……(n+n)(n-(n-1)]=0.5*[n^2*n+n*n-(2^2+……+n^2)+(2+3+4+……+n)]=0.5*[n^3+n^2-(Sn-1)+(n+2)(n-1)/2]
这就相当于得到一个关于Sn的方程。
化简一下:
n^3+n^2+1+(n+2)(n-1)/2=3Sn,得
Sn=1/3*n^3+1/2*n+1/6*n即
1/6*n(n+1)(2n+1)

方法2:
Sn=S(n-1)+n^2
=S(n-1)+1/3*[n^3-(n-1)^3]+n-1/3
=S(n-1)+1/3*[n^3-(n-1)^3]+1/2*[n^2-(n-1)^2]+1/6
=S(n-1)+1/3*[n^3-(n-1)^3]+1/2*[n^2-(n-1)^2]+1/6*[n-(n-1)]
即Sn-1/3*n^3-1/2*n^2-n/6=S(n-1)-1/3*(n-1)^3-1/2*(n-1)^2-(n-1)/6
好了!等式左面全是n,右面全是(n-1),以此递推下去,得
Sn-1/3*n^3-1/2*n^2-n/6
=S(n-1)-1/3*(n-1)^3-1/2*(n-1)^2-(n-1)/6
=S(n-2)-1/3*(n-2)^3-1/2*(n-2)^2-(n-2)/6
……
=S(1)-1/3*(1-1)^3-1/2*(1-1)^2-(1-1)/6
=0
所以Sn=1/3*n^3+1/2*n+1/6*n

其实,还有很多种方法啦~数学归纳法也很简单,还有用特殊的变形来互消等,通常我们是当成一个等式背下来,再带到要求的数列中去。
Gank_5vs1
2009-11-28 · TA获得超过1056个赞
知道小有建树答主
回答量:319
采纳率:0%
帮助的人:266万
展开全部
设An=3n^2+n
Sn=A1+....+An
=1+2+...+n+3*(1^2+2^2+...+n^2)
然后用公式就出来了。手头没纸,多包涵。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式