已知0<X<1/3,则函数y=x(1-3x)的最大值是多少?(用基本不等式的方法求)
5个回答
展开全部
∵0<x<1/3,∴1/3-x>0
∴y=x(1-3x)=3•x(1/3-x)≤3[ ( x+(1/3-x) )/2 ]²=1/12
当且仅当x=1/3-x,即x=1/6时,等号成立
∴当x=1/6时,函数取得最大值1/12
∴y=x(1-3x)=3•x(1/3-x)≤3[ ( x+(1/3-x) )/2 ]²=1/12
当且仅当x=1/3-x,即x=1/6时,等号成立
∴当x=1/6时,函数取得最大值1/12
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为0<X<1/3,所以0<1-3X<1
y=x(1-3x)满足基本不等式
所以y=x(1-3x)≤[(x+1-3x)/2]²=[(1-2x)/2]²
y≤[(1-2x)/2]²,求y的最大值,即求[(1-2x)/2]²在x∈(1,1/3)上的最大值。
无最大值啊,题目是不是有问题?
y=x(1-3x)满足基本不等式
所以y=x(1-3x)≤[(x+1-3x)/2]²=[(1-2x)/2]²
y≤[(1-2x)/2]²,求y的最大值,即求[(1-2x)/2]²在x∈(1,1/3)上的最大值。
无最大值啊,题目是不是有问题?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
太简单了
0<X<1/3所以1-3x>0
y=x(1-3x)=3x(1-3x)/3<=((3x+1-3x)/2)^2/3=1/12
0<X<1/3所以1-3x>0
y=x(1-3x)=3x(1-3x)/3<=((3x+1-3x)/2)^2/3=1/12
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
y=3x(1-3x)/3
3x(1-3x)≤[(3x+1-3x)/2]^2=1/4
当3x=1-3x时等号成立
x=1/6
x∈(1,1/3)
所以y的最大值是1/4
3x(1-3x)≤[(3x+1-3x)/2]^2=1/4
当3x=1-3x时等号成立
x=1/6
x∈(1,1/3)
所以y的最大值是1/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询