∫(x-1)/(x^2+2x+3)dx的不定积分怎么求

安克鲁
2009-11-30 · TA获得超过4.2万个赞
知道大有可为答主
回答量:4165
采纳率:33%
帮助的人:2674万
展开全部
∫(x-1)/(x²+2x+3)dx
=½∫(2x-2)/(x²+2x+3)dx
=½∫(2x+2-4)/(x²+2x+3)dx
=½∫(2x+2)/(x²+2x+3)dx - ½∫4/(x²+2x+3)dx
=½∫(2x+2)/(x²+2x+3)dx - 2∫1/(x²+2x+3)dx
=½∫d(x²+2x+3)/(x²+2x+3) - 2∫1/[(x+1)²+2]dx
=½ln|x²+2x+3| - ∫1/{[(x+1)/√2]²+1}dx + C
=½ln|x²+2x+3| - (√2)∫1/{[(x+1)/√2]²+1}d[(x+1)/√2] + C
=½ln|x²+2x+3| - (√2)arctan[(x+1)/√2] + C
无敌粥
2009-11-30 · TA获得超过289个赞
知道小有建树答主
回答量:210
采纳率:0%
帮助的人:197万
展开全部
分母下变成(X-1)(X+3). ∫(x-1)/(x^2+2x+3)dx=∫1/(X+3)dx =ln(x+3)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式