已知f(x)=-2asin(2x+π/6)+2a+b,x∈[π/4,3π/4],是否存在常数a,b∈Q(有理数)时,使得f(x)
已知f(x)=-2asin(2x+π/6)+2a+b,x∈[π/4,3π/4],是否存在常数a,b∈Q(有理数)时,使得f(x)的值域为[-3,根3-1]?若存在,求出a...
已知f(x)=-2asin(2x+π/6)+2a+b,x∈[π/4,3π/4],是否存在常数a,b∈Q(有理数)时,使得f(x)的值域为[-3,根3-1]?若存在,求出a,b的值;若不存在,说明理由。
以上两个区间均为闭区间~~过程~谢谢了 展开
以上两个区间均为闭区间~~过程~谢谢了 展开
展开全部
π/4<=x<=3π/4
2π/3<=2x+π/6<=5π/3
所以2x+π/6=3π/2,sin(2x+π/6)最小=-1
2x+π/6=2π/3,sin(2x+π/6)最大=√3/2
若a>0
则sin最小时f(x)最大
所以最大=2a+2a+b=√3-1
sin最大时f(x)最小,所以-a√3+2a+b=-3
a=1,
b=√3-5,不是有理数
若a<0
则反过来了
sin最大=√3/2时f(x)最大=-a√3+2a+b=√3-1
sin最小=-1,f(x)最小=2a+2a+b=-3
则a=-1,
b=1,成立
所以a=-1,b=1
所以不存在
2π/3<=2x+π/6<=5π/3
所以2x+π/6=3π/2,sin(2x+π/6)最小=-1
2x+π/6=2π/3,sin(2x+π/6)最大=√3/2
若a>0
则sin最小时f(x)最大
所以最大=2a+2a+b=√3-1
sin最大时f(x)最小,所以-a√3+2a+b=-3
a=1,
b=√3-5,不是有理数
若a<0
则反过来了
sin最大=√3/2时f(x)最大=-a√3+2a+b=√3-1
sin最小=-1,f(x)最小=2a+2a+b=-3
则a=-1,
b=1,成立
所以a=-1,b=1
所以不存在
展开全部
解:π/4<=x<=3π/4;
π/2<=2x<=3π/2;
2π/3<=2x+π/6<=5π/3;
-1<=sin(2x+π/6)≤√3/2;
若a>0:-√3a<=-2asin(2x+π/6)<=2a;
(2-√3)a+2b<=f(x)<=4a+2b;
(2-√3)a+2b=-3;
4a+2b=√3-1;
这样解得的a,b不是有理数;
若a<0:
4a+2b<=f(x)<=(2-√3)a+2b;
(2-√3)a+2b=√3-1;
4a+2b=-3;
a=-1,
b=1/2
π/2<=2x<=3π/2;
2π/3<=2x+π/6<=5π/3;
-1<=sin(2x+π/6)≤√3/2;
若a>0:-√3a<=-2asin(2x+π/6)<=2a;
(2-√3)a+2b<=f(x)<=4a+2b;
(2-√3)a+2b=-3;
4a+2b=√3-1;
这样解得的a,b不是有理数;
若a<0:
4a+2b<=f(x)<=(2-√3)a+2b;
(2-√3)a+2b=√3-1;
4a+2b=-3;
a=-1,
b=1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2009-12-03
展开全部
π/4<x<3π/4
2π/3<2x+ π/6<5π/3
当2x+ π/6=2π/3,即x=π/4时,sin(2x+ π/6)取得最大值√3 /2
当2x+ π/6=3π/2,即x=2π/3时,sin(2x+ π/6)取得最小值-1
当a>0时,f(π/4)=-2a(√3 /2)+2a+b=-3
f(2π/3)=-2a(-1)+2a+b=√3-1
两式联立解得:a=1满足a>0,b=√3-5 非有理数,故舍去
当a<0时,f(π/4)=-2a(√3 /2)+2a+b=√3-1
f(2π/3)=-2a(-1)+2a+b=-3
两式联立解得:a=-1满足a<0,b=1
综上,a=-1,b=1
2π/3<2x+ π/6<5π/3
当2x+ π/6=2π/3,即x=π/4时,sin(2x+ π/6)取得最大值√3 /2
当2x+ π/6=3π/2,即x=2π/3时,sin(2x+ π/6)取得最小值-1
当a>0时,f(π/4)=-2a(√3 /2)+2a+b=-3
f(2π/3)=-2a(-1)+2a+b=√3-1
两式联立解得:a=1满足a>0,b=√3-5 非有理数,故舍去
当a<0时,f(π/4)=-2a(√3 /2)+2a+b=√3-1
f(2π/3)=-2a(-1)+2a+b=-3
两式联立解得:a=-1满足a<0,b=1
综上,a=-1,b=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询