什么是柯西收敛准则
4个回答
展开全部
柯西极限存在准则又叫柯西收敛原理,给出了收敛的充分必要条件。
柯西极限存在准则,又称柯西收敛准则,是用来判断某个式子是否收敛的充要条件(不限于数列),主要应用在以下方面:数列、数项级数、函数、反常积分、函数列和函数项级数每个方面都对应一个柯西准则,因此下文将按照不同的方面对准则进行说明。
扩展资料:
反常积分:反常积分分为两种,一种是积分区间含有无穷大的反常积分(又叫做无穷限的反常积分),另一种是被积函数为无界函数的反常积分(又叫做无界函数的反常积分、瑕积分)。因此相应的柯西收敛准则有两种,两种准则的描述有些区别,但都可以根据函数的柯西收敛准则来证明。
函数:考虑到数列是特殊的函数(即定义域为正整数集),可以猜想,函数的敛散性也应当有类似的结论,这就是接下来要说的函数的柯西收敛准则。
参考资料来源:百度百科-柯西收敛准则
展开全部
“柯西收敛原理”是数学分析中的一个重要定理之一,这一原理的提出为研究数列极限和函数极限提供了新的思路和方法。
在有了极限的定义之后,为了判断具体某一数列或函数是否有极限,人们必须不断地对极限存在的充分条件和必要条件进行探讨。在经过了许多数学家的不断努力之后,终于由法国数学家柯西(Cauchy)获得了完善的结果。下面我们将以定理的形式来叙述它,这个定理称为“柯西收敛原理”。
定理叙述:
数列{xn}有极限的充要条件是:对任意给定的ε>0,有一正整数N,当m,n>N时,有|xn-xm|<ε成立
将柯西收敛原理推广到函数极限中则有:
函数f(x)在无穷远处有极限的充要条件是:对任意给定的ε>0,有Z属于实数,当x,y>Z时,有|f(x)-f(y)|<ε成立
此外柯西收敛原理还可推广到广义积分是否收敛,数项级数是否收敛的判别中,有较大的适用范围。
证明举例:
证明:xn=1-1/2+1/3-1/4+......+ [(-1)^(n+1)]/n 有极限
证:对于任意的m,n属于正整数,m>n
|xn-xm|=| [(-1)^(n+2)]/(n+1)+......+[(-1)^(m+1)]/m |
当m-n为奇数时 |xn-xm|=| [(-1)^(n+2)]/(n+1)+......+[(-1)^(m+1)]/m |
<1/n(n+1)+1/(n+1)(n+2)+......+1/(m-1)m
=(1/n-1/m)→0
由柯西收敛原理得{xn}收敛
当m-n为偶数时 |xn-xm|=| [(-1)^(n+2)]/(n+1)+......+[(-1)^(m+1)]/m |
<1/n(n+1)+1/(n+1)(n+2)+......+1/(m-2)(m-1)-1/m
=(1/n-1/(m-1)-1/m)→0
由柯西收敛原理得{xn}收敛
综上{xn}收敛,即{xn}存在极限
够全面了吧
在有了极限的定义之后,为了判断具体某一数列或函数是否有极限,人们必须不断地对极限存在的充分条件和必要条件进行探讨。在经过了许多数学家的不断努力之后,终于由法国数学家柯西(Cauchy)获得了完善的结果。下面我们将以定理的形式来叙述它,这个定理称为“柯西收敛原理”。
定理叙述:
数列{xn}有极限的充要条件是:对任意给定的ε>0,有一正整数N,当m,n>N时,有|xn-xm|<ε成立
将柯西收敛原理推广到函数极限中则有:
函数f(x)在无穷远处有极限的充要条件是:对任意给定的ε>0,有Z属于实数,当x,y>Z时,有|f(x)-f(y)|<ε成立
此外柯西收敛原理还可推广到广义积分是否收敛,数项级数是否收敛的判别中,有较大的适用范围。
证明举例:
证明:xn=1-1/2+1/3-1/4+......+ [(-1)^(n+1)]/n 有极限
证:对于任意的m,n属于正整数,m>n
|xn-xm|=| [(-1)^(n+2)]/(n+1)+......+[(-1)^(m+1)]/m |
当m-n为奇数时 |xn-xm|=| [(-1)^(n+2)]/(n+1)+......+[(-1)^(m+1)]/m |
<1/n(n+1)+1/(n+1)(n+2)+......+1/(m-1)m
=(1/n-1/m)→0
由柯西收敛原理得{xn}收敛
当m-n为偶数时 |xn-xm|=| [(-1)^(n+2)]/(n+1)+......+[(-1)^(m+1)]/m |
<1/n(n+1)+1/(n+1)(n+2)+......+1/(m-2)(m-1)-1/m
=(1/n-1/(m-1)-1/m)→0
由柯西收敛原理得{xn}收敛
综上{xn}收敛,即{xn}存在极限
够全面了吧
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
柯西收敛准则是高等数学中关于求微积分中的一个准则,可喜收敛准则是指微积分的结果总会收敛于一个定值。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询