在三角形ABC中,已知(a²+b²)sin(A-B)=(a²-b²)sin(A+B)判断三角形形状

如题。在线等,多谢。... 如题。
在线等,多谢。
展开
Qqmmmary
2014-04-23
知道答主
回答量:17
采纳率:0%
帮助的人:6.4万
展开全部
解:(a²+b²)(sinAcosB-cosAsinB)=(a²-b²)(sinAcosB+cosAsinB)
a²sinAcosB-a²cosAsinB+b²sinAcosB-b²cosAsinB=a²sinAcosB+a²cosAsinB-b²sinAcosB-b²cosAsinB
a²cosAsinB=b²sinAcosB
∴a²cosA/sinA=b²cosB/sinB
∴ a²sinAcosA/sin²A=b²sinBcosB/sin²B
正弦定理可以知道a/sinA=b/sinB ∴a²/sin²A=b²/sin²B
∴ sinAcosA=sinBcosB ∴ 2sinAcosA=2sinBcosB
∴ sin2A=sin2B
∴ 2A=2B 或者 2A=180°-2B
∴ A=B或者A+B=90°
∴ △ABC是等腰三角形或者直角三角形
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式