1个回答
展开全部
解:(a²+b²)(sinAcosB-cosAsinB)=(a²-b²)(sinAcosB+cosAsinB)
a²sinAcosB-a²cosAsinB+b²sinAcosB-b²cosAsinB=a²sinAcosB+a²cosAsinB-b²sinAcosB-b²cosAsinB
a²cosAsinB=b²sinAcosB
∴a²cosA/sinA=b²cosB/sinB
∴ a²sinAcosA/sin²A=b²sinBcosB/sin²B
由正弦定理可以知道a/sinA=b/sinB ∴a²/sin²A=b²/sin²B
∴ sinAcosA=sinBcosB ∴ 2sinAcosA=2sinBcosB
∴ sin2A=sin2B
∴ 2A=2B 或者 2A=180°-2B
∴ A=B或者A+B=90°
∴ △ABC是等腰三角形或者直角三角形
a²sinAcosB-a²cosAsinB+b²sinAcosB-b²cosAsinB=a²sinAcosB+a²cosAsinB-b²sinAcosB-b²cosAsinB
a²cosAsinB=b²sinAcosB
∴a²cosA/sinA=b²cosB/sinB
∴ a²sinAcosA/sin²A=b²sinBcosB/sin²B
由正弦定理可以知道a/sinA=b/sinB ∴a²/sin²A=b²/sin²B
∴ sinAcosA=sinBcosB ∴ 2sinAcosA=2sinBcosB
∴ sin2A=sin2B
∴ 2A=2B 或者 2A=180°-2B
∴ A=B或者A+B=90°
∴ △ABC是等腰三角形或者直角三角形
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询