展开全部
a(n+1)=(8an-12)/(3an-4)
a(n+1)-2=(8an-12-6an+8)/(3an-4)=(2an-4)/(3an -4)
1/[a(n+1)-2]=(3an -4)/(2an -4)
=(1/2)[(3an-4)/(an-2)]
=(1/2)[(3an-6+2)/(an -2)]
=(1/2)[3 +2/(an -2)]
=1/(an -2) +3/2
1/[a(n+1)-2]-1/(an -2)=3/2,为定值
1/(a1-2)=1/(5-2)=1/3,数列{1/(an -2)}是以1/3为首项,3/2为公差的等差数列
bn=1/(an -2),数列{bn}是以1/3为首项,3/2为公差的等差数列
1/(an -2)=1/3+(3/2)(n-1)=(9n-7)/6
an=6/(9n-7) +2=2(9n-4)/(9n-7)
n=1时,a1=2(9×1-4)/(9×1-7)=5,同样满足通项公式
数列{an}的通项公式为an=2(9n-4)/(9n-7)
a(n+1)-2=(8an-12-6an+8)/(3an-4)=(2an-4)/(3an -4)
1/[a(n+1)-2]=(3an -4)/(2an -4)
=(1/2)[(3an-4)/(an-2)]
=(1/2)[(3an-6+2)/(an -2)]
=(1/2)[3 +2/(an -2)]
=1/(an -2) +3/2
1/[a(n+1)-2]-1/(an -2)=3/2,为定值
1/(a1-2)=1/(5-2)=1/3,数列{1/(an -2)}是以1/3为首项,3/2为公差的等差数列
bn=1/(an -2),数列{bn}是以1/3为首项,3/2为公差的等差数列
1/(an -2)=1/3+(3/2)(n-1)=(9n-7)/6
an=6/(9n-7) +2=2(9n-4)/(9n-7)
n=1时,a1=2(9×1-4)/(9×1-7)=5,同样满足通项公式
数列{an}的通项公式为an=2(9n-4)/(9n-7)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询