
已知在三角形ABC中,三个内角A,B,C的对 边分别是a,b,c,若三角形的面积为S,且 2S=(
已知在三角形ABC中,三个内角A,B,C的对边分别是a,b,c,若三角形的面积为S,且2S=(a+b)^2-c^2,求tanC的值...
已知在三角形ABC中,三个内角A,B,C的对 边分别是a,b,c,若三角形的面积为S,且 2S=(a+b)^2-c^2,求tanC的值
展开
1个回答
展开全部
正弦定理 S=absinC/2
余弦定理 c^2=a^2+b^2-2abcosC
代入2S=(a+b)^2-c^2
得absinC=2ab+2abcosC
sinC=2+2cosC
因为(sinC)^2+(cosC)^2=1
解得cosC=-3/5 sinC=4/5 tanC=-4/3
或者cosC=-1 sinC=0 不合题意舍去
所以tanC=-4/3
记得及时评价啊,答题不易,希望我们的劳动能被认可,这也是我们继续前进的动力!
余弦定理 c^2=a^2+b^2-2abcosC
代入2S=(a+b)^2-c^2
得absinC=2ab+2abcosC
sinC=2+2cosC
因为(sinC)^2+(cosC)^2=1
解得cosC=-3/5 sinC=4/5 tanC=-4/3
或者cosC=-1 sinC=0 不合题意舍去
所以tanC=-4/3
记得及时评价啊,答题不易,希望我们的劳动能被认可,这也是我们继续前进的动力!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询