如图,矩形纸片ABCD,AB=2,∠ADB=30°,沿对角线BD折叠(使△ABD和△EBD落在同一平面内),则A、E两点间

如图,矩形纸片ABCD,AB=2,∠ADB=30°,沿对角线BD折叠(使△ABD和△EBD落在同一平面内),则A、E两点间的距离为______.... 如图,矩形纸片ABCD,AB=2,∠ADB=30°,沿对角线BD折叠(使△ABD和△EBD落在同一平面内),则A、E两点间的距离为______. 展开
 我来答
yao6774mK沊
推荐于2016-12-01 · TA获得超过211个赞
知道答主
回答量:113
采纳率:0%
帮助的人:140万
展开全部


如图,
矩形ABCD的对角线交于点F,连接EF,AE,则有AF=FC=EF=FD=BF.
∵∠ADB=30°,
∴∠CFD=∠EFD=∠AFB=60°,
△AFE,△AFB都是等边三角形,
有AE=AF=AB=2.

坦率又灵秀的长颈鹿4
高能答主

推荐于2016-08-11 · 世界很大,慢慢探索
知道大有可为答主
回答量:2.3万
采纳率:93%
帮助的人:2268万
展开全部
【答案】分析:由矩形的性质,折叠的性质可证△ABD≌△EDB,根据全等三角形对应边上的高相等,可证四边形ABDE为梯形,再根据角的关系证明△ABE为等腰三角形即可.
解答:解:由矩形的性质可知△ABD≌△CDB,由折叠的性质可知△CDB≌△EDB,
∴△ABD≌△EDB,
根据全等三角形对应边上的高相等,可知AE∥BD,
∵AD∥BC,△CDB≌△EDB,
∴∠EBD=∠CBD=∠ADB=30°,
∴∠ABE=90°-∠EBD-∠CBD=30°,
∠AEB=∠EBD=30°,即∠ABE=∠AEB,
∴AE=AB=2.
故选B.
点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后对应线段、角相等.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式