如图,在多面体ABCDEF中,四边形ABCD是矩形,AB∥EF,∠EAB=90°,AB=2,AD=AE=EF=1,平面ABFE⊥平面ABCD

如图,在多面体ABCDEF中,四边形ABCD是矩形,AB∥EF,∠EAB=90°,AB=2,AD=AE=EF=1,平面ABFE⊥平面ABCD.(1)求证:面DAF⊥面BA... 如图,在多面体ABCDEF中,四边形ABCD是矩形,AB∥EF,∠EAB=90°,AB=2,AD=AE=EF=1,平面ABFE⊥平面ABCD.(1)求证:面DAF⊥面BAF.(2)求钝二面角B-FC-D的大小. 展开
 我来答
百度网友7e3ea6950ea
推荐于2016-11-24 · TA获得超过253个赞
知道答主
回答量:138
采纳率:100%
帮助的人:68.5万
展开全部
(1)证明:如图,
∵平面ABFE⊥平面ABCD,AD⊥AB,
∴AD⊥平面BAF.
又∵AD?面DAF,
∴面DAF⊥面BAF;
(2)解:分别以AD,AB,AE所在直线为x轴,y轴,z轴,建立的空间直角坐标系,
则A(0,0,0)、D(1,0,0)、C(1,2,0)、E(0,0,1)、B(0,2,0)、F(0,1,1)
DC
=(0,2,0),
DE
=(?1,0,1)

n
=(x,y,z)
为平面CDFE的一个法向量,则
n
?
DC
=0
n
?
DE
=0
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式