已知函数f(x)=x3+ax2+bx+c的图象经过坐标原点,且在x=1处取得极大值.(Ⅰ)求实数a的取值范围;(Ⅱ)
已知函数f(x)=x3+ax2+bx+c的图象经过坐标原点,且在x=1处取得极大值.(Ⅰ)求实数a的取值范围;(Ⅱ)若方程f(x)=-(2a+3)29恰好有两个不同的根,...
已知函数f(x)=x3+ax2+bx+c的图象经过坐标原点,且在x=1处取得极大值.(Ⅰ)求实数a的取值范围;(Ⅱ)若方程f(x)=-(2a+3)29恰好有两个不同的根,求f(x)的解析式;(Ⅲ)对于(Ⅱ)中的函数f(x),对任意α,β∈R,求证:|f(2sinα)-f(2sinβ)|≤81.
展开
展开全部
(I)由题意,f(0)=0,
∴c=0,
则f(x)=x3+ax2+bx,f′(x)=3x2+2ax+b,且f′(1)=0.
即3+2a+b=0
∴b=-2a-3,
∴f′(x)=3x2+2ax-2a-3=3(x-1)(x+
),
因为当x=1时取得极大值,
所以
<-1,即a<-3;
所以a的取值范围为(-∞,-3).
(II)由下表:
依题意得:
(2a+3)2=-
或-a-2=-
,
又由a<-3解得:a=-9.
所以函数f(x)=x3-9x2+15x.
(III)对任意的实数α,β都有-2≤2sinα≤2,-2≤2sinβ≤2,
在区间[-2,2]有:f(-2)=-74,f(2)=2,f(1)=7;
因此f(x)最大值=7,f(x)最小值=-74.
所以|f(2sinα)-f(2sinβ)|≤7-(-74)=81.
∴c=0,
则f(x)=x3+ax2+bx,f′(x)=3x2+2ax+b,且f′(1)=0.
即3+2a+b=0
∴b=-2a-3,
∴f′(x)=3x2+2ax-2a-3=3(x-1)(x+
2a+3 |
3 |
因为当x=1时取得极大值,
所以
2a+3 |
3 |
所以a的取值范围为(-∞,-3).
(II)由下表:
x | (-∞,1) | 1 | (1,-
| -
| (--
| ||||||
f′(x) | + | 0 | - | 0 | - | ||||||
f(x) | 递增 | 极大值-a-2 | 递减 | 极小值
| 递增 |
a+6 |
27 |
(2a+3)2 |
9 |
(2a+3)2 |
9 |
又由a<-3解得:a=-9.
所以函数f(x)=x3-9x2+15x.
(III)对任意的实数α,β都有-2≤2sinα≤2,-2≤2sinβ≤2,
在区间[-2,2]有:f(-2)=-74,f(2)=2,f(1)=7;
因此f(x)最大值=7,f(x)最小值=-74.
所以|f(2sinα)-f(2sinβ)|≤7-(-74)=81.
展开全部
解:函数f(x)=x3+ax2+bx+c的图象经过坐标原点
∴ (0,0)代入得 c=0
f(1)=1+a +b 取得极大值
f'(x)=3x²+2ax +b
f'(1)=3 +2a +b =0
b =-3-2a
f(x)=x3+ax2+bx=x(x²+ax+b )
当x=-a/2时 最值 f(x)=(4b-a²)/2
=(-12-8a-a²)/2
f(x)=-(a²+8a+12)/2
=-[(a+4)²-4]/2
=-(a+4)²/2+ 2
∴
当a=-4时 f(x)的极大值是2
∴ (0,0)代入得 c=0
f(1)=1+a +b 取得极大值
f'(x)=3x²+2ax +b
f'(1)=3 +2a +b =0
b =-3-2a
f(x)=x3+ax2+bx=x(x²+ax+b )
当x=-a/2时 最值 f(x)=(4b-a²)/2
=(-12-8a-a²)/2
f(x)=-(a²+8a+12)/2
=-[(a+4)²-4]/2
=-(a+4)²/2+ 2
∴
当a=-4时 f(x)的极大值是2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询