如图,等边△ABC中,AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连接BE. (

如图,等边△ABC中,AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连接BE.(1)求证:△ACD≌△BCE;(2)延长BE至Q,P为... 如图,等边△ABC中,AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连接BE. (1)求证:△ACD≌△BCE;(2)延长BE至Q,P为BQ上一点,连接CP、CQ使CP=CQ=5,若BC=8时,求PQ的长. 展开
 我来答
A妖帋硾K
推荐于2020-03-11 · TA获得超过149个赞
知道答主
回答量:182
采纳率:0%
帮助的人:55.7万
展开全部
(1)先根据等边三角形的性质得到AC=BC,DC=EC,∠ACB=∠DCE=60°,即可得到∠ACD=∠BCE,从而可以证得结论;(2)6


试题分析:(1)先根据等边三角形的性质得到AC=BC,DC=EC,∠ACB=∠DCE=60°,即可得到∠ACD=∠BCE,从而可以证得结论;
(2)过点C作CH⊥BQ于H,根据等边三角形及角平分线的性质可得∠DAC=30°,再根据△ACD≌△BCE可得∠QBC=∠DAC=30°,根据含30°的直角三角形的性质可得CH的长,最后根据勾股定理求解即可.
(1)∵△ABC与△DCE是等边三角形,
∴AC=BC,DC=EC,∠ACB=∠DCE=60°,
∴∠ACD+∠DCB=∠ECB+∠DCB=60°,
∴∠ACD=∠BCE,
∴△ACD≌△BCE(SAS);
(2)过点C作CH⊥BQ于H,

∵△ABC是等边三角形,AO是角平分线,
∴∠DAC=30°,
∵△ACD≌△BCE,
∴∠QBC=∠DAC=30°,
∴CH= BC= ×8=4,
∵PC=CQ=5,CH=4,
∴PH=QH=3,
∴PQ=6.
点评:本题知识点多,综合性较强,但难度不大,是中考常见题,正确作出辅助线构造直角三角形是解题的关键.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式