如图,等边△ABC中,AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连接BE. (
如图,等边△ABC中,AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连接BE.(1)求证:△ACD≌△BCE;(2)延长BE至Q,P为...
如图,等边△ABC中,AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连接BE. (1)求证:△ACD≌△BCE;(2)延长BE至Q,P为BQ上一点,连接CP、CQ使CP=CQ=5,若BC=8时,求PQ的长.
展开
A妖帋硾K
推荐于2020-03-11
·
TA获得超过149个赞
知道答主
回答量:182
采纳率:0%
帮助的人:55.7万
关注
(1)先根据等边三角形的性质得到AC=BC,DC=EC,∠ACB=∠DCE=60°,即可得到∠ACD=∠BCE,从而可以证得结论;(2)6 |
试题分析:(1)先根据等边三角形的性质得到AC=BC,DC=EC,∠ACB=∠DCE=60°,即可得到∠ACD=∠BCE,从而可以证得结论; (2)过点C作CH⊥BQ于H,根据等边三角形及角平分线的性质可得∠DAC=30°,再根据△ACD≌△BCE可得∠QBC=∠DAC=30°,根据含30°的直角三角形的性质可得CH的长,最后根据勾股定理求解即可. (1)∵△ABC与△DCE是等边三角形, ∴AC=BC,DC=EC,∠ACB=∠DCE=60°, ∴∠ACD+∠DCB=∠ECB+∠DCB=60°, ∴∠ACD=∠BCE, ∴△ACD≌△BCE(SAS); (2)过点C作CH⊥BQ于H, ∵△ABC是等边三角形,AO是角平分线, ∴∠DAC=30°, ∵△ACD≌△BCE, ∴∠QBC=∠DAC=30°, ∴CH= BC= ×8=4, ∵PC=CQ=5,CH=4, ∴PH=QH=3, ∴PQ=6. 点评:本题知识点多,综合性较强,但难度不大,是中考常见题,正确作出辅助线构造直角三角形是解题的关键. |
收起
为你推荐: