已知函数f(x)=2cosωx(sinωx-cosωx)+1(ω>0)的最小正周期为π.(1)求函数f(x)图象的对称轴

已知函数f(x)=2cosωx(sinωx-cosωx)+1(ω>0)的最小正周期为π.(1)求函数f(x)图象的对称轴方程和单调递减区间;(2)若函数g(x)=f(x)... 已知函数f(x)=2cosωx(sinωx-cosωx)+1(ω>0)的最小正周期为π.(1)求函数f(x)图象的对称轴方程和单调递减区间;(2)若函数g(x)=f(x)-f( π 4 -x),求函数g(x)在区间[ π 8 , 3π 4 ]上的最小值和最大值. 展开
 我来答
亿梦没5788
推荐于2016-11-08 · 超过61用户采纳过TA的回答
知道答主
回答量:133
采纳率:75%
帮助的人:57.3万
展开全部
f(x)=2cosωx(sinωx-cosωx)+1=sin2ωx-cos2ωx=
2
sin(2ωx-
π
4
).
由于函数f(x)的最小正周期为T=
=π,故ω=1,即函数f(x)=
2
sin(2x-
π
4
).
(1)令2x-
π
4
=kπ+
π
2
(k∈Z),得x=
2
+
8
(k∈Z),
即为函数f(x)图象的对称轴方程.
π
2
+2kπ≤2x-
π
4
2
+2kπ(k∈Z),得
8
+kπ≤x≤
8
+kπ(k∈Z),
即函数f(x)的单调递减区间是[
8
+kπ,
8
+kπ](k∈Z).
(2)g(x)=f(x)-f(
π
4
-x)=
2
sin(2x-
π
4
)-
2
sin[2(
π
4
-x)-
π
4
]=2
2
sin(2x-
π
4
),
由于x∈[
π
8
4
],则0≤2x-
π
4
4

故当2x-
π
4
=
π
2
即x=
8
时函数g(x)取得最大值2
2
,当2x-
π
4
=
4
即x=
4
时函数g(x)取得最小值-2.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式