(1)用二项式定理证明:(n+1)^n -1能被n^2整除(2)已知n为大于1的自然数,证明:(1+1/n)^n >2

 我来答
呼延以晴4B
2015-04-18 · TA获得超过265个赞
知道答主
回答量:127
采纳率:100%
帮助的人:57.2万
展开全部
(1) (n+1)^n=n^n+C(n,1)n^(n-1)+C(n,2)*n^(n-2)+...+C(n,n-1)*n+C(n,n)*1 所以(n+1)^n-1=n^n+C(n,1)*n^(n-1)+...+C(n,n-1)*n=n^n+C(n,1)*n^(n-1)+...+n^2 其中加式的每一项都能被n^2整除,故(n+1)^n-1能被n^2整除 (2) (1+1/n)^n=1^n+C(n,1)*(1/n)+...>1^n+C(n,1)*(1/n)=1+n*(1/n)=2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式