高数重积分问题
2个回答
展开全部
原式=∫(-1,1)dx∫(0,2)√|y-x^2|dy
=∫(-1,1)dx*[∫(0,x^2)√(x^2-y)dy+∫(x^2,2)√(y-x^2)dy]
=∫(-1,1)dx*[(2/3)*(x^2-y)^(3/2)|(x^2,0)+(2/3)*(y-x^2)^(3/2)|(x^2,2)]
=(2/3)*∫(-1,1)[x^3+(2-x^2)^(3/2)]dx
=(4/3)*∫(0,1)(2-x^2)^(3/2)dx
令x=√2*sint,dx=√2*costdt
原式=(16/3)*∫(0,π/4)cos^4tdt
=[(1/6)*sin4x+(4/3)*sin2x+2x]|(0,π/4)
=4/3+π/2
=∫(-1,1)dx*[∫(0,x^2)√(x^2-y)dy+∫(x^2,2)√(y-x^2)dy]
=∫(-1,1)dx*[(2/3)*(x^2-y)^(3/2)|(x^2,0)+(2/3)*(y-x^2)^(3/2)|(x^2,2)]
=(2/3)*∫(-1,1)[x^3+(2-x^2)^(3/2)]dx
=(4/3)*∫(0,1)(2-x^2)^(3/2)dx
令x=√2*sint,dx=√2*costdt
原式=(16/3)*∫(0,π/4)cos^4tdt
=[(1/6)*sin4x+(4/3)*sin2x+2x]|(0,π/4)
=4/3+π/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询