请教矩阵(线性代数)方面大神 这个不等式,第一步到第二步是怎么来的

H表示共轭转置,tr是矩阵的迹请说下是哪方面的知识。... H表示共轭转置,tr是矩阵的迹请说下是哪方面的知识。 展开
 我来答
电灯剑客
科技发烧友

2016-08-31 · 智能家居/数码/手机/智能家电产品都懂点
知道大有可为答主
回答量:1.2万
采纳率:83%
帮助的人:5002万
展开全部
从你贴的片段来推测,Γ_v^{-1} 应该是一个 Hermite 半正定矩阵,简单一点记成 A
基于这个假定

d^H A d 是一个数,所以 d^H A d = tr(d^H A d) = tr(A dd^H)
对于同型矩阵,tr(X^H Y)其实是一个内积(自己验证),所以有 Cauchy-Schwarz 不等式
|tr(X^H Y)|^2 <= tr(X^H X) tr(Y^H Y)
用在这里就是
(tr(A dd^H))^2 <= tr(A^2) tr[(dd^H)^2] = tr(A^2) (d^Hd)^2
直接看 A 的特征值(都是非负实数)易得 tr(A^2) <= [tr(A)]^2
这样就有 d^H A d <= tr(A) (d^Hd)

这个估计非常粗糙,如果你知道范数的话更好的估计是
d^H A d <= ||d^T||_2 ||A||_2 ||d||_2 = (d^Hd) ||A||_2 (这里对 A 没有诸如 Hermite 半正定这样的要求)
对于 Hermite 半正定阵,看特征值就知道 ||A||_2 <= tr(A) 是显然的
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式