大一定积分问题 15
1个回答
展开全部
f(x)=2x^3-9ax^2+12a^2x
a=1,则有f(x)=2x^3-9x^2+12x, f'(x)=6x^2-18x+12=6(x^2-3x+2)=6(x-1)*(x-2)
设过原点的切线方程是y=kx.切点坐标是(xo,yo),则有k=yo/xo=6(xo^2-3xo+2)
yo=6(xo^3-3xo^2+2xo)=f(xo)=2xo^3-9xo^2+12xo
解得4xo^3-9xo^2=0
xo^2(4xo-9)=0
xo=0(舍), xo=9/4
yo=2*9^3/64-9*9^2/16+12*9/4=27-729/32=135/32
故切点坐标是(9/4,135/32)
故切线方程是y=135/72 x
2.f'(x)=6x^2-18ax+12a^2=6(x-a)(x-2a)=0
得x1=a,x2=2a
a>0,则有在x<a,x>2a时,f'(x)>0,函数增,在a<x<2a时,f'(x)<0,函数减
a=1,则有f(x)=2x^3-9x^2+12x, f'(x)=6x^2-18x+12=6(x^2-3x+2)=6(x-1)*(x-2)
设过原点的切线方程是y=kx.切点坐标是(xo,yo),则有k=yo/xo=6(xo^2-3xo+2)
yo=6(xo^3-3xo^2+2xo)=f(xo)=2xo^3-9xo^2+12xo
解得4xo^3-9xo^2=0
xo^2(4xo-9)=0
xo=0(舍), xo=9/4
yo=2*9^3/64-9*9^2/16+12*9/4=27-729/32=135/32
故切点坐标是(9/4,135/32)
故切线方程是y=135/72 x
2.f'(x)=6x^2-18ax+12a^2=6(x-a)(x-2a)=0
得x1=a,x2=2a
a>0,则有在x<a,x>2a时,f'(x)>0,函数增,在a<x<2a时,f'(x)<0,函数减
追问
你……没错频?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |