
高数,第七题怎么做
2个回答
展开全部
解:∵yy"+2(y')^2=0
==>yy'dy'/dy+2(y')^2=0
==>ydy'/dy+2y'=0
==>ydy'/dy+2y'=0
==>dy'/y'+2dy/y=0
==>ln│y'│+2ln│y│=ln│C1/3│ (C1是积分常数)
==>y^2y'=C1/3
==>y^2dy=C1dx/3
==>y^3/3=C1x/3+C2/3 (C2是积分常数)
==>y^3=C1x+C2
∴原方程的通解是y^3=C1x+C2。
==>yy'dy'/dy+2(y')^2=0
==>ydy'/dy+2y'=0
==>ydy'/dy+2y'=0
==>dy'/y'+2dy/y=0
==>ln│y'│+2ln│y│=ln│C1/3│ (C1是积分常数)
==>y^2y'=C1/3
==>y^2dy=C1dx/3
==>y^3/3=C1x/3+C2/3 (C2是积分常数)
==>y^3=C1x+C2
∴原方程的通解是y^3=C1x+C2。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询