设等式√a(x-a)+√a(y-a)=√x-a-√a-y在实数范围内成立,其中a...
设等式√a(x-a)+√a(y-a)=√x-a-√a-y在实数范围内成立,其中a、x、y是两两不同的实数,则3x2+xy-y2x2-xy+y2的值是()A.3B.13C....
设等式√a(x-a)+√a(y-a)=√x-a-√a-y在实数范围内成立,其中a、x、y是两两不同的实数,则3x2+xy-y2x2-xy+y2的值是( ) A. 3 B. 13 C. 2 D. 53
展开
1个回答
展开全部
解:由于根号下的数要是非负数,
∴a(x-a)≥0,a(y-a)≥0,x-a≥0,a-y≥0,
a(x-a)≥0和x-a≥0可以得到a≥0,
a(y-a)≥0和a-y≥0可以得到a≤0,
所以a只能等于0,代入等式得
√x-√-y=0,
所以有x=-y,
即:y=-x,
由于x,y,a是两两不同的实数,
∴x>0,y<0.
将x=-y代入原式得:
原式=3x2+x(-x)-(-x)2x2-x(-x)+(-x)2=13.
故选B.
∴a(x-a)≥0,a(y-a)≥0,x-a≥0,a-y≥0,
a(x-a)≥0和x-a≥0可以得到a≥0,
a(y-a)≥0和a-y≥0可以得到a≤0,
所以a只能等于0,代入等式得
√x-√-y=0,
所以有x=-y,
即:y=-x,
由于x,y,a是两两不同的实数,
∴x>0,y<0.
将x=-y代入原式得:
原式=3x2+x(-x)-(-x)2x2-x(-x)+(-x)2=13.
故选B.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询