x->0
e^x = 1+ x+(1/2)x^2+ (1/6)x^3 +(1/24)x^4 +o(x^4)
sinx = x - (1/6)x^3 +(1/120)x^5 +o(x^5)
sinx .e^x
=[x - (1/6)x^3 +(1/120)x^5 +o(x^5)] .[1+ x+(1/2)x^2+ (1/6)x^3 +(1/24)x^4 +o(x^4) ]
=x.[1+ x+(1/2)x^2+ (1/6)x^3 +(1/24)x^4 +o(x^4) ]
-(1/6)x^3.[1+ x+(1/2)x^2+ (1/6)x^3 +(1/24)x^4 +o(x^4) ]
+(1/120)x^5. [1+ x+(1/2)x^2+ (1/6)x^3 +(1/24)x^4 +o(x^4) ]
=[x+ x^2+(1/2)x^3+ (1/6)x^4 +(1/24)x^5 +o(x^5) ]
+[-(1/6)x^3-(1/6)x^4-(1/12)x^5 +o(x^5) ]
+[(1/120)x^5 +o(x^5) ]
=x+ x^2+(1/2-1/6)x^3+ (1/6-1/6)x^4+ (1/24-1/12+1/120)x^5 +o(x^5)
=x+ x^2 +(1/3)x^3 -(1/30)x^5 +o(x^5)
f(x)
= e^x.sinx
=x+ x^2 +(1/3)x^3 -(1/30)x^5 +o(x^5)
e的x次方那项写到o(x⁵)可以吗
可以但没有需要
e^x = 1+ x+(1/2)x^2+ (1/6)x^3 +(1/24)x^4 +(1/120)x^5+o(x^5)
原因
sinx = x - (1/6)x^3 +(1/120)x^5 +o(x^5)
已经保证 e^x 每一项 最小都增加 x^1