分布积分怎么算?

 我来答
帐号已注销
2021-04-05 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:165万
展开全部

∫ u'v dx = uv - ∫ uv' dx。

分部积分:

(uv)'=u'v+uv'

得:u'v=(uv)'-uv'

两边积分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx

即:∫ u'v dx = uv - ∫ uv' dx,这就是分部积分公式

也可简写为:∫ v du = uv - ∫ u dv

扩展资料:

把多项式看做U,把三角函数和对数看做V

U的各阶导数 U U' U''.U^(N+1)

V^(n+1) 的各界原函数 V^(n+1) V^(n) V^(n-1).V

各项符号+,—相间,最后一项为(-1)^(N+1)

参考资料来源:百度百科-分部积分法

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式