无穷大乘以无穷小到底等于多少?

 我来答
亦是如此
高粉答主

2021-10-02 · 往前看,不要回头。
亦是如此
采纳数:6378 获赞数:544497

向TA提问 私信TA
展开全部

无穷小乘以无穷大没有意义。

正无穷大+正无穷大 = 正无穷大;负无穷大+负无穷大 = 负无穷大;正无穷大+负无穷大 没有意义;无穷大乘以无穷大仍然是无穷大;无穷小乘以无穷小仍然是无穷小;无穷大和无穷小不是有限的常量,不能码锋纯完全遵守常量的运算法则。

无穷小量即以数0为极限的变量,无限接近于0。确切地说,当自变量x无限接近x0时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。

相关内容解释

在叙述一个区间时,只有上限,则是(-∞,x)(x∈迟咐R);只有下限,则是(x,+∞)(x∈R);既没有上限又没有下限,则是(-∞,+∞)。

高等数学中,规定:基扮x为实数,当x>0时,x÷0=+∞;当x<0时,x÷0=-∞;当x=0时,x÷0=NaN。

+∞与正实数加、减、乘、除、乘方、开方运算,结果永远是+∞;-∞与正实数加、减、乘、除、乘方、开方运算,结果永远是-∞。

+∞在某种意义上可以表达为x+1,因为x是表达任意实数的符号,而无限一定大于任何任意实数,而0.999...999(0.9的无限循环)=1的悖论显示无限或许是无限大到能涉及更高一个层面。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式