(n-1)S2/σ2服从χ2(n-1)分布
2022-12-11 · 百度认证:北京惠企网络技术有限公司官方账号
结果:服从Χ2(n-1)分布
解题过程如下:
解:∑(Xi-μ)2/σ2=(1/σ2)∑(Xi-X*)2+[(X*-μ)/ (σ/n1/2)]2
∵(X*-μ)/ (σ/n1/2) 服从标准正态分布 N(0,1)
∴[(X*-μ)/ (σ/n1/2)]2服从Χ2(1)分布
又∵∑(Xi-μ)2/σ2服从Χ2(n)分布
∴(1/σ2)∑(Xi-X*)2=∑(Xi-μ)2/σ2-[(X*-μ)/ (σ/n1/2)]2
∴服从Χ2(n-1)分布
扩展资料
证明正态分布的方法:
若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。
由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。只要会用它求正态总体在某个特定区间的概率即可。
μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。
正态分布具有两个参数μ和σ^2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ^2是此随机变量的方差,所以正态分布记作N(μ,σ2)。
μ是正态分布的位置参数,描述正态分布的集中趋势位置。概率规律为取与μ邻近的值的概率大,而取离μ越远的值的概率越小。正态分布以X=μ为对称轴,左右完全对称。正态分布的期望、均数、中位数、众数相同,均等于μ。
σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。
2020-07-03 广告